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1 Summary 
The objective of this effort is to extend the current scientific and mathematical foundations of 
agent-based computing by adding rigor to the engineering of agent-based systems and tools in 
support of the Taskable Agent Software Kit (TASK) program. 

The scope of the research effort is to develop mathematically correct techniques for modeling 
and analyzing agent behaviors, agent design methods, and the design of agent creation tools.  
Tasks include: 

• OEF 

− Formulate and coordinate OEF parameters and activities for the TASK program that 
capture all key mathematical and theoretical facets of multi-agent systems within the 
context of multiple UAVs operating to service multiple tasks. 

− Develop models to describe, predict, and evaluate the behaviors of multi-agent 
systems (MAS).  

• MAS Research 

− Extend computer theoretic models of coordination and adaptation to model 
autonomous interactive processes.  Investigate approaches to incorporate interactive 
models of computation into the design and specification of agents and MAS. 

− Develop strategies to observe/control behavior of agents and MAS behavior on-line 
(i.e. emergent behavior).  

• Testbed for Taskable Agent Systems 

− Develop a common framework within which the expressive power of a MAS 
implementation of a command and control system can be demonstrated 

− Develop (large-scale) models of MAS, develop prototypes/models of developed 
methods and techniques, and evaluate the viability and effectiveness of these 
techniques in modeling, analyzing, observing, and controlling MAS behavior. 

1.1 Objectives and Accomplishments 
ALPHATECH’s work on the TASK program has included efforts on three distinct tasks: The 
development and maintenance of a Research Exploration Framework and evolving it into an 
Open Experimentation Framework for all program participants; Design and development of a 
Testbed for Taskable Agent Systems, which will serve as a common simulation environment for 
evaluation of program research; Research and Development of new agent theories designed to 
facilitate coherent behavior in Multi-Agent Systems. 
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1.1.1 Open Experimentation Framework (OEF) 

One of ALPHATECH’s tasks was the development and maintenance of the Control and 
Adaptation in Heterogeneous Dynamic Environments (CAHDE) Research Exploration 
Framework (REF) for a subset of the Projects in the TASK Program. The CAHDE REF 
provides:  

• A framework to investigate solutions in dynamic control and adaptation of large-scale 
multi-agent system (MAS) behavior,  

• A means to analyze agent/multi-agent system designs with respect to their ability to 
predict and control emergent behavior, and  

• A context in which to demonstrate applicability and utility of multi-disciplinary MAS 
research to solve challenging dynamic command and control problems.  

The military context of the CAHDE REF is the control and adaptation of autonomous air 
vehicles in uncertain, dynamic, heterogeneous, and hostile environments. This includes the 
military problems of air traffic control, dynamic resource allocation, sensor grid management, 
cooperative control, and self-organizing, self-healing, and self-regulating large-scale systems.  
Research foci of the TASK projects within the CAHDE REF are: mathematical underpinnings of 
modern computer science, new essential algorithms for key DOD needs, agent designs with 
quantifiable performance, and methodologies and tools to design and analyze military C2 MAS. 
ALPHATECH’s success with the CAHDE REF has now being transitioned to an Open 
Experimentation Framework (OEF), which is serving as a context for the evaluation and analysis 
for all agent research conducted in the TASK program.   

The Open Experimentation Framework (OEF) is a parameterized problem, solution, and 
experiment space that provides a well-defined, standard context in which researchers can apply 
dissimilar approaches to the same difficult problem set.  Systematic variations to baseline 
experiments, which capture aspects of the problems, provide measurements of the solution 
parameters achieved by the different research approaches with respect to the problem 
parameters.  At a minimum, these experimentally derived mappings of problem space to solution 
space provide system designers with guidance in the selection of particular implementation 
approaches.  At a maximum, researchers into Multi-Agent System (MAS) architectures and 
designs may notice trends in these mappings that they can exploit for “better” MAS theories. 

REF/OEF accomplishments: 
• Successfully defined and administered the CAHDE REF and coordinated the participation 

and research of multiple project PIs. 
• Identified and refined seven major critical elements for MAS research and evaluation 
• Developed detailed OEF problem specifications and metrics for Adaptation and Coordination 

critical elements 
• Defined and specified baseline parameters for the UAV-S(1) surveillance problem. 
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• Engaged all project PIs on OEF definition, problem specification, and integration of their 
research 

1.1.2 Testbed for Taskable Agent Systems (TTAS) 
The Testbed for Taskable Agent Systems is a simulation of m collaborative, adaptive, and 
autonomous agent-driven UAVs that survey and/or search for n ground sites.  TTAS 
accommodates multiple approaches and implementations to multi-agent autonomy, adaptation, 
and collaboration, which can be mixed.  It simulates only those features that might significantly 
affect Multi-Agent System properties and includes the ability for detailed data collection into a 
relational database, three-dimensional physical representation, standard, reproducible 
experimental configurations, and limited two- and three- dimensional displays of physical 
movement. 

TTAS is designed to serve the following purposes: 

• Investigate and define UAV kinematics models, task definitions, and standard 
experimental conditions of the DARPA TASK OEF 

• A standard configuration managed platform on which one can perform standard, well-
defined experiments on different MAS design and implementation approaches 

− Systematic, configuration managed variation of problem parameters 
− Systematic, configuration managed measurements 
− Easily incorporate additional managed variations and measurements particular to 

specific Multi-Agent System approaches 
• Provide an experimental basis for the comparison of different Multi-Agent System 

approaches—particularly with respect to autonomy, adaptation, and coordination—under 
a wide range of identical problem conditions 

TTAS accomplishments: 

• Developed a scaleable, multi-threaded software system with the following features: 
− Well defined APIs supporting multiple interactive agents with different underlying 

implementations 
− Fully 3-dimensional environment 
− Six degrees of freedom for UAV motion 
− Relational database for extensive experiment data logging 
− XML configuration file to adjust the many system parameters 

 

1.1.3 MAS Research 
ALPHATECH’s work has been focused on developing agent-based systems that are capable of 
adapting to dynamic environments while continuing to execute rational actions.  As an agent 
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encounters the various states of the environment in which it operates, reinforcement learning 
(RL) enables the agent to iteratively learn a policy for rational action selection.  The continual 
nature of reinforcement learning allows the agent to adapt its policy as the environment changes.  
In a MAS, the individual agents are working together to achieve a common goal and therefore 
must consider each other as part of the environment.  The agents must understand how the 
behavior of other agents influences their ability to achieve objectives, either explicitly through 
interaction or implicitly through observation.  ALPHATECH has been working to extend 
reinforcement learning theories so that agents can learn to consider their peers as a dynamic 
aspect of the environment and to interact effectively to improve the overall system performance. 

MAS research accomplishments: 

• Conducted extensive research efforts focused on the development of new mechanisms for 
coordination and interaction of agents operating in a Multi-Agent System. 

• Developed a mechanism for measuring quality of knowledge learned through Reinforcement 
Learning 

• Conducted experiments to evaluate quality measurement theories and methodology 
• Initiated design and development of a Partially Observable Markov Decision Process 

framework for an agent controller capable of operating within a multi-agent system 
environment.  

2 Introduction 
The eventual deployment of large-scale networks of cooperative autonomous vehicles offers 
tremendous promise for future DoD missions in the following areas.  

• Intelligence: UAVs for radar, imaging, and surveillance for military missions abroad 
• Targeting: Autonomous UAVS able to cooperatively search, detect, identify, and destroy 

targets. 
• Homeland security: Ubiquitous monitoring of environments for biological/chemical/nuclear 

agents  
• Electronic monitoring for COMINT and SIGINT 
• Autonomous Robot Teams for search & rescue or hazardous materials cleanup 
• Inexpensive, fault tolerant, redundant, massively distributed systems for battlefield command 

and control 

2.1 Needs for Agent Technology 
Advances must be made in mechanisms for control, adaptation, and coordination of Multi-Agent 
Systems in order to support complex applications required for the DoD. 

Advances in autonomy (Control) will allow heterogeneous units to operate independently (local 
goals & missions) and yet cooperate effectively to achieve group goals. 
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− Problem addressed: flexible, “run-time” distribution of control 

− UAV example: new and existing UAVs can be used to achieve critical missions through 
regulation of collective behavior without centralized design 

Advances in adaptability will provide agents with the ability to recognize and respond to 
unanticipated mission and environment dynamics by learning new behaviors 

− Problem addressed: system design incompleteness 

− UAV example: respond to new threats (e.g. handheld surface-to-air weapons), 
environments (e.g. sand storms), missions, objectives 

Advances in coordination will allow agents to communicate local information, goals, and intent 
to improve group performance. 

− Problem addressed: design interoperability 

− UAV example: assuring UAVs share the information (situation assessment, goals, etc) 
needed to assure achievement of group goals 

2.2 Barriers to Deployment of Multi-Agent Systems 
Finally, there are several barriers to deploying Multi-Agent Systems applications.  These barriers 
coincide with the goals of the TASK program. 

• Evaluating Multi-Agent System designs:  The complexity of Multi-Agent Systems makes 
their performance particularly difficult to analyze.  Consequently, it is equally difficult to 
determine the best system design for a MAS.  New methods are needed to determine when a 
MAS design is “good” or “better” than another, or even what constitutes “good enough?”  
Some of the complexities and open questions are: 

• Designs are not against a fixed requirements specification 
• Mission needs and environmental dynamics change over time 
• What agent designs lead to more effective MAS? 

− How to compare and select agent subsystem designs 
− Which coordination mechanisms are suitable for specific problem configurations? 
− When should agents adapt and how should they adapt? 
− How much information should be shared between agents? 

• How can emergent behaviors be predicted and controlled? 
− Assuring performance in unanticipated circumstances 

• How to understand MAS performance boundaries and achieve performance guarantees? 
• Automating the design and analysis of agents and MAS 
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2.3 TASK Roadmap 
A key TASK program objective is to ensure the effective employment of multi-agent 
technologies into future, critical DoD systems.  To do this the TASK program must develop a 
scientific base for high-confidence Multi-Agent Systems operating in dynamic environments, 
resulting in the following products: 

• Agent Design Methodologies: which establish core decision and control mechanisms for 
agents and define parameters for effective use. 

• MAS Analysis Methodologies: which enable the prediction and control of emergent behavior 
in large scale systems. 

• Rules of thumb for MAS design to achieve performance guarantees. 
• A set of general metrics that can be used to realize effective MAS designs. 
• TASK Toolkits: Software tools for the synthesis and analysis of MAS 
• Evaluation and transition of technological advances to relevant DoD needs 
 
The first phase of the TASK program (2000-2002) focused on the demonstration of initial multi-
agent system concepts through the application of a particular technology (game dynamics, 
control theory, genetic programming, information theory, etc.) to one or more critical elements 
of a Multi-Agent Systems (coordination, adaptation, agent construction, etc.) within the context 
of one of the three REFs. The second phase of the TASK program (2003-2004) is focused on a 
proof-of-concept application of new algorithms and technologies within a single coherent Open 
Experimentation Framework consisting of a set of highly DoD relevant UAV surveillance 
problems and a multi-agent system design, evaluation, and experimentation methodology.  A 
third phase of TASK (2004+) might conceivably take the results of the second phase and apply 
them to transition-oriented DARPA programs (similar to MICA, FCS and Sense-It) and/or to a 
new program involving the autonomous control and coordination of unmanned vehicles in highly 
dynamic environments. 

3 OEF 
The TASK OEF serves as a common problem framework within which multiple researchers can 
evaluate different approaches to MAS design and analysis.  Of the seven defined critical 
elements, Adaptation, Control, Coordination, Uncertainty, Resource Management, Agent 
Construction, and Reliability, our initial emphasis is on Adaptation and Coordination.  OEF 
efforts have been focused on: 

• Defining MAS design problems, emphasizing Adaptation and Coordination 

− “Baseline problems” - the simplest problem that captures the essential characteristics 
of the critical element 
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− Extended problems have parameters to address robustness, scalability, mission 
complexity, uncertainty 

• Defining OEF/MAS Challenge Experiments  

− “Baseline experiments” for quantitative evaluation of design approaches 

− Individual experiments are defined/designed by the individual projects 

• Identify and develop metrics to evaluate MAS solutions to the OEF design problems 

Adaptation: 

We define MAS adaptation as the ability of the MAS to recognize and respond to unexpected 
change.  New theories must be developed for adaptive distributed control as well as new design 
and evaluation methodologies.  Without adaptation agents are unable to react effectively to 
unanticipated change and the performance of a MAS may degrade unpredictably.  Within the 
context of the OEF problem, one would expect to see a degraded ability of the UAVs to service 
tasks and complete missions as change is introduced, yielding unpredictable mission behavior 
and/or performance.  Solutions may range from parametric adjustment to evolutionary changes 
in the structure of the system (learning). The rate and character of adaptation solutions needed 
may differ with the rate and character of change, such as dynamics associated with threats and 
tasks, failures and noise, and adversary behavior.  Our goal for the OEF has been to develop one 
or more design problems (e.g. MAS adaptation problems) that  

1) Capture the “essence” of the adaptation problem and, as such, are useful to 
algorithm/agent/MAS designers 

2) Provide a way to categorize the class of algorithms that can solve the problem 

3) Are as simple as possible, yet lead to non-trivial MAS interactions and behavior 

4) Tie to the OEF (UAV swarms) and other critical DoD MAS systems 

5) Support experiments to evaluate algorithm/technique effectiveness 

Coordination: 

We define MAS coordination as the propagation of information and local agent action and 
reaction to propagated information and remote agent actions.  Without coordination, agents 
unintentionally waste their efforts and squander resources or fail to accomplish objectives that 
require collective effort.  Within the OEF context, agents might unnecessarily duplicate servicing 
of tasks, tasks could go unserviced, service may not be timely, or resources could be used 
inefficiently. 

Since the set of MAS coordination strategies may change as environmental uncertainty or 
bandwidth changes, the research goals are to identify: the salient design space attributes, the 
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dimensions in which coordination needs to scale, and metrics for MAS performance with and 
without alternate coordination mechanisms. 

3.1 OEF History 

3.1.1 IVRS 
ALPHATECH began the TASK program by creating and managing the Intelligent Vehicle and 
Roadway System (IVRS) Research Exploration Framework (REF).  IVRS was a problem 
designed to entail multiple vehicles controlled by autonomous agents interacting in an 
environment.   

The essential components of the IVRS were a population of vehicles and a roadway system on 
which the vehicles move.  Another component of primary importance, but not essential in all 
situations of interest, is a distributed population of “traffic signals” with some capability to 
regulate the flow of vehicles.  Thus, the IVRS represented an example of a system characterized 
by the flow of particles through a conduit system, possibly regulated by valves.  Systems such as 
these are capable of exhibiting microscopic and macroscopic behaviors of interest including 
coalition formation, agent-environment interaction, wave phenomena, and other flow patterns.  
Moreover, within the IVRS setting we had the freedom to assign a rich set of behaviors, 
adaptation laws, and interaction mechanisms to the individual particles and valves (agents).   

The IVRS problem supported agent research across the following dimensions: 

• Autonomy 
− Decisions made by individual vehicles 
 

• Interaction & Communication 
− Message passing (nearby agents) 

 Negotiation/protocols 
− Chalkboard  

 Information dissemination 
 

• Vehicle Adaptation & Dynamics 
− Obstacle and collision avoidance 
− Learning & memory 
− Route planning 
− Reaction & dynamic replanning 
− Attractive & repulsive forces 
− Social rules & fairness 
− Feedback mechanisms 
 

• Vehicle Goals (self-interest) 
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− Reach destination 
− Minimize elapsed travel time 
− Maximize safety 
− Maximize travel comfort (relatively constant speed & direction) 
− Minimize fuel usage, other costs 
 

• Vehicle Equipment & Performance Specs 
− Size (mass, length, width, height) 
− Speed / acceleration / deceleration 
− Fuel economy & emissions 
− Sensors 
− Communications 

• Heterogeneous Vehicles  
− Varying priorities/values for goals 
− Varying equipment & performance specs 

 

The IVRS REF also supported the following MAS research areas: 

• Collective and Global Goals 
− Maximize aggregate throughput 
− Maximize aggregate safety 
− Minimize aggregate pollution  
− Minimize aggregate fuel usage 

• Dynamic Environment 
− Each individual vehicle encounters a rapidly changing environment 

 other vehicles 
 transmitted messages 
 intersections, curves, & grades 
 obstacles & hazards 
 equipment failures 
 control agents 
 rules/laws/protocols 
 evolving goals 
 evolving aggregate conditions 

• Possible Control Agent Features 
− Monitoring and dissemination of aggregate data 
− Self-motivated to achieve localized collective goals 

 control via behavioral mechanisms 
 control via supervisory signals 

• Emergent Behavior 
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− Bifurcations, chaos, & phase changes 
− Self-organizing characteristics 

 coalition formation (e.g., platoons) 
 fast & slow lanes 

− Flow characteristics & patterns 
 laminar vs. turbulent 
 steady vs. unsteady 
 “slinky effect” 

 
Within the IVRS REF six research groups conducted a wide variety of critical multi-agent 
system research including: investigation of decentralized agent control techniques that guarantee 
emergent behavior (Dartmouth, “Exit at RFK stadium” problem); construction of traffic signal 
agents from Elementary Adaptive Modules in order to improve vehicle flow (MIT/BBN); 
investigation of platooning behaviors in non-stationary environments (USC/ISI), investigation of 
the effect of different reinforcement learning-based control techniques on emergent behavior 
(ALPHATECH), the evolution of transport network agents (Hampshire College) and many other 
results. 

 
As part of the establishment of the IVRS REF we developed a framework to characterize agent 
subsystems and behavior characterization. The agent behavior characterization recognized a need 
to separate the range of agent behaviors into three layers: physical, tactical, and strategic.  
Physical level behaviors govern low-level dynamics of the agent (e.g. motion control, collision 
avoidance) and are “autonomic” in nature.  Strategic level behaviors govern “long-term” goal-
oriented planning for the agent.  Tactical level behaviors govern short-term, or tactical, decision-
making to achieve immediate objectives and are the primary focal point of multi-agent system 
research. 

The agent design subsystems included in the framework are: 

Prescribed

Tactical
Physical

Strategic
Layer Basic

Prescribed

Prescribed

Designed

Agent

Designed

 

External
Model

Internal
Model

On-line
Adaptation

Collaboration

Plan/Goal
Management

Situation
Assessment

2-way com
m

s

Sensors

Actuators

Local
Processing

 

Figure 1. Agent characterization and agent behavior models. 
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• Collaboration: governs cooperative and competitive mechanisms toward achieving individual 
and common goals. 

• Plan and Goal Management: governs dynamic management of goal priorities and plans to 
achieve local and common goals. 

• Situation Assessment: governs local observation and instantaneous assessment of individual, 
group, and environmental state. 

• External Model: governs formulation and dynamic updating of external world model 
including prediction of external behavior and impact of local decisions. 

• Internal Model: governs autonomous actions to achieve individual performance objectives. 
• On-line Adaptation: governs dynamic modification of properties and behaviors within pre-

defined constraints in response to assessed situation.  

The essential properties and default behaviors of the physical agent characterization serve as a 
foundation for constructing the agent characterization.  Inputs to the agent subsystems must be 
compatible with prescribed low-level sensor capabilities; outputs from the agent subsystems 
must be compatible with prescribed actuator capabilities; collaboration mechanisms must be 
compatible with prescribed communication capabilities.  
 

3.1.2 CAHDE 
The IVRS REF was later transitioned into the Control and Adaptation of Heterogeneous Agents 
in Dynamic Environments (CAHDE) REF, which kept many of the interesting aspects of the 
IVRS problem, but directed research to a 3D multi-UAV problem, which had more military 
relevance.  

The CAHDE REF is designed to support research in which vehicle agents compete and/or 
collaborate to minimize undesirable emergent behavior, optimize the use of a shared resource, 
and attain their individual and/or collective goals.  The CAHDE REF problem is M agents 
servicing N tasks, such as a team of UAVs gathering intelligence, teams of smart munitions 
taking out targets, or the coordinated airlift of supplies.  Research goals included enabling 
vehicles to adapt to dynamic environments, such as weather and threats, and subsequent 
flexibility and adaptation of the MAS, through coordinated action and interaction. 

As part of the establishment of the CAHDE REF we refined the agent/MAS characterization 
developed during the IVRS REF into the beginnings of a more formal design and analysis 
framework. Collectively, the CAHDE REF projects started to enumerate the critical design and 
evaluation dimensions of MAS, namely propagation of information, adaptation, coordination, 
control, uncertainty, performance guarantees, and local versus global objectives. (This would 
later develop into the critical MAS dimensions of the OEF: adaptation, coordination, and 
autonomy, plus agent construction).  The CADHE REF also began producing a set of 
comprehensive metrics for the design and analysis of MAS along with some early prototype 
tools. 
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As with the IVRS REF the seven research groups participating in the CAHDE REF were able to, 
separately and collaboratively, conduct a wide variety of critical multi-agent system research 
including:  

• Improved responsiveness of adaptive MAS relative to non-adaptive MAS through the 
recognition of unanticipated situations and response by evolving emergent behaviors. 
[MIT/BBN and Hampshire College] 

• Methods for reasoning about large-scale agent systems [UIUC] 
• Library of Elementary Adaptive Modules and tested structures [MIT/BBN] 
• PushPop Evolution components [Hampshire College] 
• Metrics for coordination and collaboration as generalized forms of agent-agent 

synchronization [SFI] 
• Market-based and game-dynamical approaches for decentralized control of large-scale 

MAS in dynamic environments [USC/ISI] 
• Reinforcement learning and stochastic control agent design [ALPHATECH] 
• Distributed algorithms (using artificial potential functions) for 3D airspace control 

enabling agents to adapt to their neighbors (and MAS to adapt to their environment) 
[Dartmouth] 

• And many others 
 

ALPHATECH’s success with the establishment of the CAHDE REF and the integration of the 
research of a subset of the program’s PIs was the impetus behind the current OEF, which is an 
extension of the CAHDE REF problem.  The following sections describe the OEF design 
problems in detail. 

3.2 Design Problems 
Within MAS designs, two major issues always faced by MAS designers are the selection of 
coordination and adaptation mechanisms appropriate to the characteristics of the problem at 
hand.  The long history of computer science research in MAS coordination chronicles many 
theories, methodologies, and implementations from which to choose but provides only loose 
guidelines for selecting one approach over another.  Generally, coordination between 
autonomous agents within a MAS is used to complete in some optimal manner a task that is 
beyond the capabilities of an individual agent.  As such, coordination is closely associated with 
team design and spontaneous team formation, many variations of plan creation and execution, 
situation monitoring and active re-planning, coordinated behavior responses (in MASs that do 
not include an explicit “planning and re-planning” mechanism), and joint-coordinated learning.  
Adaptation has nearly as long a history of research but with fewer theories, etc. from which to 
choose.  MAS adaptation must handle changes to the environment in which the MAS operates, 
changes to the MAS itself (such as changes to the number and capabilities of the autonomous 
agents), and new MAS-wide tasking.  Of course, in MAS design adaptation and coordination are 
closely coupled. 
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Currently, the TASK OEF Adaptation and Coordination MAS Design Problems parameterizes 
the problem space with respect to uncertainty, scale, mission complexity, responsiveness, and 
reliability and the solution (design) space with respect to adaptation, coordination, and 
autonomy1.  These parameterizations represent many of the situations in which MAS solutions 
are applicable: in particular, many military operations that might employ agents can be 
parameterized in this manner.  The Design Problems and corresponding Experiments are 
specified with respect to baseline values for the problem space parameters.  Measurements of 
domain dependent quantities, which correspond to the important domain dependent problem 
space goals, are carried out in standard testbed simulations.  When experiments are conducted 
that systematically vary the baseline problem space parameters, the measurements provide 
quantified responses of particular Coordination and Adaptation algorithms to different problem 
situations. 

A major difficulty one faces when specifying experimental MAS Design Problems is to avoid 
dominance of the solution space by the details and intricacies of specific details of the domain in 
which the problems are posed while retaining the features essential to the MAS characterization 
of the domain.  Of course, different problem domains, no matter how abstractly stated, will 
always emphasize some problem and solution space parameters over others and are likely to 
include parameters not noted above.  The first step in our approach to design problem and 
experiment specification is top-down in which we state as abstractly as possible a general MAS 
design problem that isolates as much as possible the essential features of Coordination and 
Adaptation.  The second step is bottom-up in which we select a problem domain for experiments, 
which introduces domain dependent instances of the problem and solution space parameters. 

3.2.1 The General TASK OEF Design Problem and Experiment 
 The abstract MAS Coordination and Adaptation Design Problem is m autonomous agents, which 
can exchange information, detect tasks, and provide some type of service2 to a detected task, that 
find and service n tasks.  For the baseline design problem and experiments we specify the 
following additional constraints: 

1. Each task is serviced only once by only one agent 
2. Each task has unique identification and location3 
3. An agent may know the location of a task 
4. An agent may or may not know the locations of all tasks 

                                                 
1 For an approach to the measurement of agent autonomy in Multi-Agent Systems see, K. S. Barber and C. E. 
Martin, Agent Autonomy: Specification, Measurement, and Dynamic Adjustment, in Proceedings of the Autonomy 
Control Software Workshop at Autonomous Agents 1999 (Agents’99), (Association for Computing Machinery), pp5-
15, 1999. 
2 Service, distance, and other such terms are intentionally ambiguous: service ranges from only detection through 
determination of the properties of a detected task, doing something to the task, to complete destruction of a detected 
task, which, of course, is also ambiguous. 
3 The meanings of identity, location, and distance are domain dependent. 
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5. The mixture of known and unknown tasks ranges from all known to all unknown 
6. During an experiment the mixture of know and unknown tasks may remain constant or it 

may vary slowly, disruptively (suddenly), or randomly.  Note that a Coordination and 
Adaptation approach must encompass mixtures of known and unknown tasks, that is, it 
should not deal with only all known or all unknown. 

7. An agent learns the identification of a task upon detection of the task 
8. A task can have either one x1 or two type attributes x1x2, where x1, x2∈{A, B, C, D, F} 
9. Detectors are of a single type y, where y∈{A, B, C, D, F}, and can detect only those tasks 

that have the same type attribute 
10. An agent can have two detectors each of a different type 
11. Tasks have values, which an agent can earn for task detection-service 
12. Either no communication between agents or only binary agent-to-agent communication, 

which is limited to a standard distance2 (communication range) between the two agents. 
13.  In some experiments, there are range-limited broadcasts by an agent (initially there are 

no broadcasts) 
Variations from the baseline problem are the subject of later discussions. 

The baseline experimental measurements or solution measures are divided into two groups. 

Solution Measures: Mission Success 

1. The rate at which an agent services tasks 
2. The rate at which an agent services previously serviced tasks (serviced by other agents) 
3. The length of time before a task is serviced 

Solution Measures: MAS Performance 

1. The rate4 at which agents communicate 
2. The average complexity5 of inter-agent communications 
3. The average length6 of inter-agent communications 
4. The rate at which an agent consumes computational resources7 

Of course, in general additional measurements may be made and are likely to be required in a 
particular domain. 

In addition to the constraints noted above, additional problem space parameters and ranges, 
which a treatment of the OEF baseline Coordination and Adaptation problem should handle and 

                                                 
4 The rate of inter-agent communication is taken to be the number occurrences per unit time  
5 The complexity of inter-agent communications is TBD. 
6 The length of an inter-agent communication is taken to be the number of four-bit bytes. 
7 The definition of computational resources is TBD. 
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which will be varied from experiment to experiment as well as during experiments, are the 
following: 

1. The number of tasks and the number of agents 
2. Failure, which is the disappearance of one or more agents 

The purpose of the TASK OEF baseline design problem as described above is to provide a 
defined, well-known standard environment in which the rates achieved by different coordination 
and adaptation approaches can be measured.  For a particular coordination and adaptation 
mechanism, standard systematic variations from the baseline problem parameters (as discussed 
above) provide the measures of the specified rates under different problem conditions.  MAS 
designers can use the experimentally derived mappings between the problem space parameters 
and the measured rates to assess the potential performance of specific coordination and 
adaptation mechanisms in particular problem environments. 

Variations from the baseline Coordination and Adaptation Design problem include the 
following: 

1. A task of two types, x1x2, must be detected simultaneously by an agent of type x1 and an 
agent of type x2 

2. Agent-to-agent communications are unreliable  
3. The information communicated by an agent may be inaccurate 
4. An agent’s detection-service of a task may be inaccurate with respect to location, 

identity, and/or type 
5. A task may change its location unannounced to the MAS.  In this case, the agents can 

detect and track task movement 
6. A task can detect and track agents and can change its location based upon to this 

knowledge 
7. A task may need to be detected-serviced on a schedule 
8. A task that can detect and track can be a threat, that is, such a task can remove an agent 

from the MAS 
9. An added task with an unknown location (identity, and type) must be found within a 

specified time interval after its addition 
These variations, which require domain-specific details, are the basis for addition Coordination 
and Adaptation design problems in the Unmanned Aerial Vehicle (UAV) domain. 

3.2.2 The UAV Domain UAV-S (1) Baseline Problem and Experiment  
Within the military context of the TASK OEF the simplest realization of the general baseline 
Coordination and Adaptation Design Problem is a MAS of m autonomous-agent-driven UAVs 
and n ground sites.  The UAVs are outfitted with sensors and communication gear and the MAS 
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is ordered 8 to detect and service the ground sites.  As discussed more fully below, in the UAV 
domain we assume that detectors have an additional attribute (different from the type attribute y) 
that can have the value of either surveillance or search.  A surveillance detector determines the 
identity, type, and precise geo-location of a ground site and has a small field-of-view (FOV).  A 
search detector determines only that a ground site exists within its FOV, which is significantly 
larger than a surveillance detector’s.  A search detector performs detection, and a surveillance 
detector performs service. 

As discussed above the 0th variation of the baseline UAV problem has the following conditions:  

1. A constant specified mixture of ground sites with geographic locations known by every 
UAV and of ground sites with geo-locations unknown by any UAV 

2. The number of UAVs and the number of ground sites remain constant 
3. A serviced ground site, after a specified standard interval of time, is replaced by a new 

ground site, which has a new and unique identity and location9,10 
4. There is to be no duplicate surveillance (servicing) of any site by the same or any other 

UAV 
5. A site can be found (by the search detector) multiple times by any UAV 
6. There are multiple types of UAVs, that is, the MAS is composed of UAVs that have 

different flight and performance characteristics11 
7. Each detector and each ground site has a single type, which is one of {A, B, C, D, F} 
8. Each ground site has a decimal value in the range [0…100] 
9. A UAV is aware of all other UAVs that are within a specified distance and is not aware 

of those outside this distance  
10. A UAV can communicate with only one other UAV at a time 
11. Two UAVs can communicate only when they are closer than a specified distance 

 

The experimental measurements are the following: 

1. The average rate at which the UAVs service (through the surveillance detector) sites 
2. The average rate at which the UAVs service previously detected sites 

                                                 
8 Ordered in the military sense of “You guys go do this now!” 
9 The location of a new ground site, which replaces a detected ground site, may be made known to all the UAVs.  A 
serviced, aged site is removed from the simulation upon replacement in order to keep the landscape from becoming 
littered with inactive sites. 
10 The continuous replacement of detected, aged sites has three purposes: (1) to avoid experiments dominated by the 
initial configuration of the ground sites—the cold start effect, (2) to examine problems that can not be treated, 
perhaps more easily, by centralized optimization computations, and (3) to replicate the quasi-real-world environment 
where it makes sense to deploy MASs. 
11 Purely homogeneous MASs (all UAVs have the same flight and performance characteristics) are included in the 
systematic variation of the problem parameters. 
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3. The time elapsed before a site is first serviced 
4. The average rate at which the UAVs detect (through the search detector) sites 
5. The average rate at which UAVs communicate 
6. The average length of the UAVs’ transmissions 
7. [Future: the average complexity of communications] 
8. [Future: the average computational resources consumed per UAV] 
 

This fairly simply problem supports a rich array of research into multi-agent systems – 

• From handling uncertainty in the environment – e.g. resulting from an agent’s limited 
communication and sensor ranges 

• To the investigation of coordination strategies under a range of different scenarios – such 
as highly bandwidth constrained scenarios and scenarios involving swarms of agents 

• From the investigation of different control strategies – such as leader-follower, 
hierarchical control, autonomous control, market-based controls, and so on. 

• To the investigation of strategies to adapt agent/MAS behaviors to: changes in numbers 
of agents, changes in task mix, changes in agent heterogeneity/specialization, etc., and 

• From investigating MAS robustness to investigating MAS scalability. 
 

Additional physical characteristics and constraints are required in order to complete a fully 
specified experiment that can be reproduced in different implementations of testbeds and 
simulators. 

1. The physical space for OEF experiments, known as the Area of Interest (AOI), is a ground 
surface rectangle 400km per side and unlimited altitude.  There are no terrain features such as 
mountains, roads, rivers, lakes, etc.   

2. A site is a point on and within the AOI ground surface rectangle.  A standard coordinate 
system12 will not be specified since the geophysical measurements enter in only relative or 
difference terms.  The distribution of sites within the AOI or at a minimum the 
characteristics of the distribution must be repeatable for the experimental measurements 
made with different MAS design approaches to be comparable.  For OEF surveillance and 
search experiments, the site locations must be distributed randomly, continuously, and 
uniformly across the AOI rectangle13: 

                                                 
12 One can find definitions for the standard geographic reference systems used by DoD on the National Imagery and 
Mapping Agency (NIMA) WWW site http://www.nima.mil.  Of particular interest is the Digital Terrain Elevation 
Data (DTED standard (MIL-PRF-89020b), which uses the standard World Geodetic System (WGS 84) (MIL-STD-
2401) for horizontal datum and Mean Sea Level (MSL) determined by the 1996 Earth Gravitational Model.  
13 With a random continuous uniform distribution we avoid the detailed specification of configurations of site 
locations and simplify the generation of new locations after an aged detected site is removed. 
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where P(x, y) is the continuous differential probability that a site is located within the 
differential dxdy of the point (x, y).  

3. The mixture of known and unknown sites is 80% sites whose geo-location is known to all 
UAVs and 20% whose geo-location is unknown by all UAVs. 

4. The target type (T) of a site is randomly and uniformly selected to be one of (A, B, C, D, F).  
5. The value of a site is a real number randomly and uniformly selected from the interval 

(0…100). 
6. A ground site vanishes 60 seconds after detection. 
7. There are always a total of 100 ground sites (detected and undetected) in the AOI. 
While we have attempted to remove the major physical details of the high-fidelity UAV search 
and surveillance problem, there are some details of both sensor and air vehicle types that must be 
examined and included.   

The initial surveillance task of the problem—precise detection of known ground sites—and the 
later search task of the problem present a slight conundrum.  Current Synthetic Aperture Radar 
(SAR) in its Spotlight or Spot mode is often used for high accuracy resolution (0.1m to 1.0m) 
detection14 from UAVs.  The size of the ground patch detected by the Spot SAR is roughly 500m 
to 800m in diameter and generally 4km to 25km away on one side of the air vehicle.  UAV SAR 
in its Stripmap mode, which might be used for search, detects a swath ~1km wide (with 
resolution 0.3m to 3.0m) 7km to 30km to the side of the UAV.  Ground Moving Target 
Indication (GMTI) radar, which is different from the SAR, cuts a swath ~10km wide 4km to 
25km to the side of the air vehicle and has a minimum target speed detection of ~3m/s15.   

8. As a compromise between retaining essential features and excluding extraneous details, we 
take the detection footprint size for the surveillance detector to be a circle with a 300m 
diameter directly beneath the UAV, that is, centered on the UAV’s nadir vector.  The 
surveillance detector detects the unique identity, the precise geo-location, and the type of a 
ground site.  

9. If a surveillance detector is of a different type than the ground site, the site remains un-
serviced, and the UAV does not accrue the value of the site. 

10. A site must remain within the surveillance detector’s footprint or FOV for 10sec to be 
serviced 

                                                 
14 Detection is both accurate geolocation determination and target type identification: is it a tank, a rocket launcher, a 
Starbucks, etc. 
15 Other SAR modes such as Stereoscopic SAR of Digital Elevation Model (DEM) construction and for feature 
(building, water tank, road, etc) extraction and Interferometric SAR for terrain change detection are also useful but 
will not be considered here.  Similarly, optical, infrared, video, and Signal Intelligence (SIGINT) sensors will be 
excluded. 
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11. The instantaneous search detector for static sites is a circle 1000m in diameter also centered 
on the air vehicle’s nadir.  The search detector can detect only the presence of a site within 
its search circle and determine the site’s geo-location to within 6m: it cannot detect the 
identity, precise geo-location, or type of the site. 

12. The search and surveillance detectors cannot operate simultaneously: the switch from one 
detection mode to the other consumes one-half second (0.5sec). 

 

The GMTI specifications are discussed in the Design Problems for Moving Targets section. 

Several types of UAVs can be differentiated by flight characteristics.  The details of these 
different types may influence significantly the performance of various MAS Coordination and 
Adaptation approaches.  First, there are fixed-winged UAVs, that can not hover, can not ascend 
or descend without moving forward at significant speed, and can not turn sharply, and there are 
non-fixed-winged UAVs that can hover, can ascend or descend without moving forward, and can 
turn sharply.  Second, some UAVs are designed to perform long-endurance general missions, 
and others are designed to perform short-duration tactical special-purpose missions.  Third, some 
UAVs operate at high to medium altitude and others at low to medium altitude.  Fourth, some 
UAVs are large and accommodate multiple sensors, complex navigation devices, and 
sophisticated communication packages, while others are small to micro and accommodate one or 
two limited capability sensors, rudimentary (but perhaps quite innovative16) navigation, and 
limited communications.  Fifth, some UAVs are fast and others are slow. 

Actual and proposed UAVs encompass nearly all combinations of these characteristics.  For 
example, the Global Hawk UAV has a fixed wing, operates at high altitudes (~20km) on long-
duration (~35hours with a range of 22,000km) endurance missions, is relatively fast (~180m/s), 
and is “large” (35m wingspan and 13m length).  The Predator UAV also has a fixed wing, 
operates at moderate altitudes (~8km) on short (range ~740km) missions, is slow (cruise speed 
~38m/s), and is roughly the same size as the Global Hawk.  Of course, the Predator can be 
armed.  By contrast, the Dragon Eye UAV (used by the Marine Corps for over-the-hill 
reconnaissance) can be carried in a backpack (weighs ~2kg) and assembled in the field, 
(possibly) operates up to 0.1524km altitude for up to 1 hour at speeds up to 18m/s, and has a 
wingspan of 1.143m.  It navigates by GPS waypoints (field-in-flight programmed), carries full-
motion color, low-light, and infrared video cameras (not simultaneously), and can transmit line-
of-sight video up to 10km.  Current examples of small rotary-winded UAVs are Schiebel 
Camcopter (100km range, 6 hour endurance, 25kg payload) and the Yamaha RMAX (10km 
range, 90 min flight time, 30kg payload).  More exploratory UAVs include DARPA’s Organic 
Air Vehicles (OAV), which are small—up to 28 inches diameter—duct-fan VTOL hovering 
craft, short-duration, and potential tactical sensor platforms, and Hummingbird Warrior, which is 
a medium altitude, long-duration endurance, moderately fast VTOL with a 3700km range.   

                                                 
16 For example see An Ultra Wideband Radar for Micro Air Vehicle Applications by Robert J. Fontana, et al, 
available at http://www.multispectral.com/pdf/Advances_Radar.pdf. 
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For MAS Coordination and Adaptation design and experimentation, we define only two types of 
UAVs with respect to flight characteristics: a fixed-wing (UAV Alpha) that corresponds roughly 
to the Predator and a VTOL hoverer (UAV Beta) that corresponds roughly to the Fire Scout.  
Both of these will operate at medium altitudes and have medium- to long- duration.   

Name: UAV Alpha17 
Description: Fixed-winged 
Minimum Speed:  
Maximum Speed: 60 m/s (level flight) 
Cruise Speed: 38 m/s (level flight, dwell speed) 
Maximum Forward Acceleration: 
Maximum Climb Rate: 
Maximum Descent Rate: 
Minimum Turn Radius: 30 m at 38 m/s 82º bank, 1000 m at 38 m/s 30º bank,  

   300 m at 60 m/s 82º bank, 1300 m at 60m/s 30º bank 

Maximum Altitude: 7.6 km 
Fuel Capacity: 300 kg 
Fuel Consumption: 
Empty Mass: 715 kg 
Fueled Mass: 1,015 kg 
Width: 15.0 m (wingspan) 
Height: 2.0 m 
Length: 8.0 m 

 

Name: UAV Beta18 
Description: Non-fixed-winged, VTOL, hover 
Minimum Speed:  
Maximum Speed: 64 m/s (level flight) 
Cruise Speed: 
Maximum Forward Acceleration:  
Maximum Climb Rate: 
Maximum Descent Rate: 
Maximum Altitude: 6 km 
Fuel Capacity: 
Fuel Consumption: 
Empty Mass: 72 kg 
Fueled Mass: 

                                                 
17 A detailed mathematically specified flight kinematics model for the actual flight dynamics of the fixed-wing UAV 
Alpha will be provided. 
18 A detailed mathematically specified flight kinematics model for the actual flight dynamics for the non-fixed wing, 
VTOL, hover UAV Beta will be provided. 
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Width: 8.4 m (rotor) 
Height: 2.9 m 
Length: 
 

• There are, for example, 16 UAVs: 8 of type UAV Alpha and 8 of type UAV Beta 
• The maximum UAV-to-UAV communication distance is 3.2 km 
• A UAV can determine the presence, heading, and speed of all other UAVs within 6km 
The following four problems are natural extensions to the baseline UAV-S(1) problem.  Each 
problem is designed to stress the MAS solutions in a new way and will be the subject of 
coordinated PI research efforts as the research evaluation progresses. 

1. UAV-S Problem Class - UAV-S (2) Problem: Cross-Mission Tasking 
• UAV-S (2) Problem complexity: Same problem as UAV-S (2), with the following change: 
• Tasks are of type x or xx, x ∈ {A…F } (e.g. A, CD, E, AB).  XX Tasks must be serviced 

simultaneously (within time window [t0,t1]) by different agents with appropriate 
capability - e.g. CD task is serviced by AC agent and D agent, or CE agent and AD agent, 
but not by a single CD agent. 

• UAV-S (2) MAS Objective and Problem Solution Evaluation:  Same as UAV-S (1) 
2. UAV-S Problem Class - UAV-S (3) Problem: Imperfect Information 

• UAV-S (3) Problem complexity: Same problem as UAV-S (2), with the following change: 
• Detection and Identification are imperfect. [TBD - parameter specification.  Some agents 

will be higher fidelity than other agents]. 
• UAV-S (3) MAS Objective and Problem Solution Evaluation:  Same as UAV-S (2) 

3. UAV-S Problem Class - UAV-S (4) Problem: Mobile Targets 
• UAV-S (4) Problem complexity:  
− Fixed number of agents (m) of one type, Fixed number of tasks (n) of one type. Tasks 

are uniform in value. 
− Each task needs to be visited repeatedly (e.g. to maintain location estimate).  
− Detection and identification are accurate.  Each task has a unique ID. 
− Initial position of task is known, but are subsequently unknown due to mobility. 
− Task mobility characteristics may be known (by the agents) or unknown, fixed or 

variable (within a task: e.g. go-stop-go), heterogeneous or homogeneous (across the 
tasks).  

• UAV-S (4) MAS Objective: Maintain position estimate on each target 
• UAV-S (4) Problem Solution Evaluation:  Measure the resources required by the UAV-S 

design problem solutions 
4. UAV-S Problem Class - UAV-S (5) Problem: Hybrid Tasking 
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• Definition TBD 

3.3 Milestones Achieved and Future Direction  
ALPHATECH’s work in defining and managing the OEF has been successful, measured by a 
participatory process that resulted in the definition of a set of baseline problems with detailed 
parameters, within which the TASK PIs can cast their work.  ALPHATECH has taken 
substantial steps to engage PIs in the specification of the OEF, which has resulted in a 
specification that is both relevant to military problems and capable of hosting a variety of 
research approaches. 

Our future OEF work will be oriented around supporting the PI researchers through the 
following: 

• Developing a parameterized problem generator that will allow the PIs to specify 
parameters through a set of menus and will produce a file with a specific problem 
configuration consistent with the UAV-S (1) surveillance problem 

• Design baseline approaches to baseline problems for research evaluation purposes 
• Further definition of the more advanced UAV-S problems 
• Continued coordination of PI research within the OEF context 

4 Testbed for Taskable Agent Systems  

4.1 Overview 
The Testbed for Taskable Agent Systems (TTAS) is a simulation platform with which we can 
perform experiments on different designs and implementations of Multi-Agent Systems (MASs).  
TTAS supports our own research work by providing a mechanism for evaluating disparate agent 
designs, operating together as a Multi-Agent System.  The inter-agent communication 
capabilities provided by TTAS allow us to conduct research in MAS coordination and the 
multitude of configurable parameters supports our work on agent adaptation.  Additionally, 
TTAS provides facilities for capturing and storing detailed experiment data and supports analysis 
through repeatable experimentation.  TTAS is available to all TASK PI researchers as an 
environment for evaluating disparate approaches to agent technology within a common MAS 
problem framework.  TTAS can be used by all project PIs to test and analyze their particular 
approach to coordination or adaptation and then the results can be compared across the TASK 
program as a whole.  This strategy will provide enormous benefit in terms of the ability to 
classify the applicability of various technologies across the dimensions of an entire class of 
problems. 

Our focus with TTAS is on coordination and adaptation in a MAS of autonomous Unmanned 
Aerial Vehicles (UAVs) that search for and survey known, unknown, stationary, and mobile 
ground targets (tasks) and that can communicate.  TTAS has a set of well-defined Application 
Programming Interfaces (APIs) for the UAVs, agents, tasks, agent-to-agent messaging, and data 
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recording.  Any MAS that implements these APIs can execute within TTAS.  Agents from 
different approaches can execute simultaneous within TTAS and, if they adhere to TTAS’ basic 
messaging, can function as a MAS composed of heterogeneous agent designs. 

TTAS is fully three dimensional with six full degrees of freedom for UAV motion (three 
translational and three rotational about the UAV’s body center) and three-dimensional terrain 
location for the ground sites.  TTAS uses flight simple kinematics models for UAV motion rather 
than full equation of motion flight dynamics models, which is sufficient for OEF experiments.   

TTAS uses an XML-based configuration file for data input and to record the conditions of a 
repeatable OEF Experiment.  The experimenter records the parameters of a simulation 
experiment within the configuration file, which TTAS reads, interprets, and execute.  These 
parameters describe the following: 

1. The simulation environment 
2. The UAVs 
3. The agents that control the UAVs 
4. The flight kinematics models of the UAVs 
5. The sensor constraints of the UAVs 
6. The target ground sites (tasks 
7. The agents that controls the ground sites (if any) 

 

The configuration file and how TTAS uses it is described in Section 3.2. 

If enabled by the experimenter, data is recorded into a relational database.  At execution time the 
experimenter can select the specific data and to be recorded and the frequency of recording but 
may need to have implemented methods within specific Java classes (the agent, UAV, ground 
site, etc) to extract the data encapsulated within the classes.  These extraction methods are 
defined as part of the TTAS APIs.  

The progress of an experiment can be monitored in a two dimensional wizard’s-eye-view that 
displays a downward look into the AOI with identification annotating the UAV and ground 
target symbols.  Also, a fully three dimensional view with user maneuverable viewpoint is 
available but currently is of limited utility. 

The quantities varied during normal OEF experiments are the following: 

1. The number of UAVs 
2. The number of target ground sites 
3. The ratio of the number of ground sites about which the UAVs know (known tasks) 

to the number about which they do not know (unknown tasks) 
4. The maximum distance at which one UAV can detect another UAV 
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5. The maximum distance at which two UAVs can communicate 
6. Errors in UAV to UAV communication 
7. The size of a sensor footprint 
8. The distance at which a sensor can detect a target ground site 
9. The accuracy of a sensor 
10. The reliability of a sensor 

Other quantities such as fuel capacity and communication bandwidth will be added. 

Summary quantities measured during normal OEF experiments are the following: 

1. The rate at which known ground sites are surveyed once  
2. The rate at which known ground sites are surveyed more than once 
3. The rate at which unknown ground sites are found 
4. The average time interval between the appearance of a known ground site and is 

surveillance 
5. The average time interval between the appearance of an unknown ground site and is 

discovery 
Of course, additional quantities can be computed from the recorded data.  Experimenter 
implemented summary quantities will be added. 

4.2 Technical Description 
TTAS is built upon the Multi-Agent Development Kit19 (MadKit), designed and implemented by 
Jacques Ferber, Olivier Gutknecht, Fabien Michel at Laboratoire d'Informatique, de Robotique et 
de Microélectronique de Montpellier (LIRMM).  MadKit provides all the basic agent services 
that TTAS requires: agent identification, lifecycle, and messaging.  We surveyed many platforms 
for multi-agent simulations and chose MadKit because (1) it is written in Java, (2) it imposes no 
significant restriction on how an agent is designed and implemented, (3) it can be extended 
easily, and (4) it has provisions for data gathering.  We discuss the aspects of MadKit relevant to 
TTAS in Section 3.2.1 and TTAS’s use of MadKit throughout Section 3.2. 

TTAS’s design is object-oriented and highly modular.  TTAS’ overall design and the design of 
its components is performed and maintained in the Unified Modeling Language (UML).  
Complex individual component logic is designed and archived with standard flow charts.  Unit 
testing is used extensively during implementation. 

We achieve TTAS’s modularity by exploiting Java’s dynamic class loading and reflection 
capabilities. Many of the parameters in the configuration file consist of the complete name of a 

                                                 
19 MadKit is open source software, available under the standard LGPL and GPL licenses, and can be obtained from 
http://www.madkit.org. 
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Java class, such as com.alphatech.TASK.uav.UAVBetaController (in the case of the rotary 
winged hoverable air vehicle) and the parameters necessary to created instances of this class, 
such as com.alphatech.TASK.basicvehicle.BasicVehicleState, 
com.alphatech.TASK.uav.UAVBetaParameters, etc.  Others class parameters are simple 
numbers, such as the size of the simulation world’s Area of Interest (AOI) or the coordinates of 
the initial position, velocity, and direction of a UAV.  The Java Virtual Machine (JVM) loads 
these Java classes into TTAS at runtime.  With runtime class loading the same UAV can be 
controlled by agent implementation A in one experimental run and by agent implementation B in 
another without any code changes to TTAS or any changes in the experiment’s configuration.  
TTAS uses Java reflection to retrieve the constructors and methods of a particular class 
appropriate to the types of the particular parameters supplied in the configuration file.  Reflection 
is necessary since Java constructors and methods can be overloaded.  New instances of a class 
parameterized with respect to the values of the specified parameters can be created.  Calls on the 
methods retrieved by reflection can be used to set additional parameters.   Also, TTAS uses Java 
cloning to create new instances of a class as a deep copy of an existing instance. As will be 
discussed below, this method is used extensively to generate new UAVs or target ground sites on 
an experimenter-specified schedule. 

TTAS’ high level design and major components is depicted schematically in Fig. 2. 

TTAS’s components are discussed below. 

4.2.1 Multi-Agent Development Kit 
MadKit is implemented as a micro-kernel with the services noted above implemented as MadKit 
agents that work directly with the micro-kernel.  The MadKit micro-kernel is small (50 
kilobytes) and can be executed on many Java different platforms (J2SE or J2EE 1.4 and Personal 
Java, for example).  A developer can extend agent services by add special agents that work with 
the micro-kernel directly.   
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A MadKit based MAS implementation can be executed on a single platform or on multiple 
platforms that communicate by standard TCP/IP sockets.  Once a MadKit kernel is informed of 
the network location and identify of another MadKit kernel, it communicates with the remote 
kernel directly and transfers messages from its agents to agents running in the other platform-
kernel combination. 

MadKit provides a unique platform dependent identifier for each agent by instances of the 
madkit.kernel.AgentAddress class.  This identifier is used throughout TTAS and the TTAS 
APIs. 
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Figure 2.  Testbed for Taskable Agent Systems design 
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MadKit manages the agent lifecycle, which consists of activation, execution, and termination.  
Activation, a call to the method activate (of madkit.kernel.AbstractAgent), registers the 

TTAS agent with the MadKit micro-kernel.  A TTAS agent is a Java extension of the 
madkit.kernel.AbstractAgent class.  Execution is the agent performing its programmed 
activities within the MadKit framework, and termination is the cessation of those activities. 

When an agent is activated it is registered as a member of the MadKit community composed of 
all agents running in the current mico-kernel-platform combination.  Also, it can request to be a 
member of a group and can request a particular role in that group.  MadKit may reject such 
requests since a developer can establish criteria for membership in a group and for playing a role.  
The notions of community, groups, and roles arose from Ferber’s research into the structure of 
artificial organizations for MASs, the theory of which is named Aalaadin.  Fig. 3 (taken from 
one of Ferber’s papers) depicts a schematic representation of these notions. 

TTAS defines three groups Simulation, Vehicles, and Tasks.  The UAVs occupy the role of 
AirVehicle in both the Vehicles and Simulation groups.  Ground target sites occupy the role of 
task in both the Tasks and Simulation groups.  Other TTAS simulation specific agents occupy 
other roles and will be discussed below.   

TTAS uses MadKit’s message capabilities for all agent-to-agent communications.  MadKit 
defines a set of messages that includes simple text messages, XML messages, Java Object 
encapsulating messages, Speech Act Messages, Knowledge Query and Manipulation Language 
(KQML) messages, and Agent Communication Language messages.  We have extended 
MadKit’s basic madkit.kernel.Message to messages appropriate to the TTAS UAV 
simulations, such as Launched_AgentI, Kill_Agent, Agent_Killed, Site_Added, etc.  With MadKit 
messages can be sent to a particular agent (identifier by the madkit.kernel.AgentAddress) 
instance, broadcast to all agents that occupy a specific role within a group, or broadcast to all 
activated agents.  

Figure 3. The Aalaadin agent organization model 
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MadKit agents can be constructed such that each agent executes asynchronously within its own 
thread or such that all agents execute synchronously (sequentially) in a single thread.  Our design 
uses the synchronous approach (MadKit synchronous engine) so that competition for computing 
resources is not a problem.  Such competition can occur in the JVM with many (greater that 10) 
single threaded simultaneously execution agents, which is the case for OEF coordination and 
adaptation design experiments.  

4.2.2 TTAS main()Method 
As with all Java programs TTAS is invoked from its main method.  This method loads the 

handler for data recording indicated by the experimenter on the command line, loads the TTAS’ 
Graphic User Interface (GUI), and places a reference to the data recording handler in the GUI.  
As discussed below, even though all data recording takes place through Java Database 
Connectivity (JDBC) different vendor’s database may require slightly different invocation and 
connection procedures.  Loading the data recording handler at run time allows TTAS the 
flexibility to handle these situations without re-implementation for each different database. 

4.2.3 TTAS GUI 
The TTAS GUI is implemented with the Java Swing package.   It holds the two- and three- 
dimensional display and summary data measurement plots and provides the menus and controls 
for the following: 

1. Selecting the TTAS configuration file for the experiment 
2. Specifying the length of a time step and the duration between time steps (which must be 

non-zero to prevent the MadKit threads and the Java Swing execution thread from 
coming into conflict) 

3. Starting and stopping the simulation experiment run 
4. Selecting, hiding, and showing the two- and three-dimension and data displays 

Figure 4. The MadKit architecture (from Ferber) 
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4.2.4 TTAS Experiment Simulation Configurer 
After the experimenter selects the particular experiment configuration file TTAS reads and 
parses the XML file and through Java dynamic class loading and reflection (as described above) 
creates the classes and class instances needed to execute the simulation.  All these Java elements 
are encapsulated within a data structure,  BasicTestBedElementsGenerationSchedule, that is 
used by other elements within TTAS.  The configurer is designed to handle general Java classes 
and instances so that TTAS can be extended to include additional features such as threats or 
terrain without re-implementation of this important component. 

4.2.5 TTAS Simulation Component 
The TTAS simulation component TestBedSimulation, which is extension of the MadKit 
synchronous engine class madkit.kernel.Scheduler, provides the connection to the MadKit 
micro-kernel necessary for execution of the simulation.  The simulation component is a threaded 
MadKit agent that is managed by the MadKit micro-kernel but executes within its own thread.  
Within TestBedSimulation a loop (a Java while control loop) cycles until stopped by the 
experimenter.  Within this loop drivers for the groups Vehicles, and Tasks and several other 
agents (such as the two- and three-dimension displays) are called during each cycle. A driver is 
an extension of the madkit.kernel.Activator and is a part of the MadKit synchronous engine. 
Each TTAS MadKit agent that is a member of a particular group (or is to be called by its own 
driver) implements a method that will be called at each time step.  For the Vehicles group the 
method is moveon, for the Tasks group it is update, for the two- and three- dimension displays it 
is observe, and so on.  The driver for each group (or agent) calls that method for all the agents 
of that group.  MadKit through Java reflection provides the driver with a reference to every agent 
that is currently a member of its group since agents can be created and destroyed or can join and 
leave groups as the simulation proceeds.  Additionally, the simulation component creates and 
joins the TTAS groups (in the role startUp or Scheduler), creates the drivers and registers them 
with the MadKit micro-kernel, and creates and launches the TTAS Elements Generator, 
Simulation Environment, Umpire, Data Recorder, and two- and three- dimension display 
components, which are also MadKit synchronous agents. Refer to Fig. 2 for the simulation 
components looping cycle. 
4.2.6 The TTAS Elements Generator Component 

We have designed TTAS so that agents such as UAVs and target ground sites (tasks) can be 
created or destroyed at anytime during the simulation on a regular schedule, randomly, or in 
response to requests.  The TestBedElementsGenerator class instance that performs this 
function is a standard MadKit synchronous agent.  At each time step it checks whether it has 
received any messages requesting that an agent be created or destroyed and examines data 
contained within this experiment’s TestBedElementsGeneratorSchedule class instance 
(created by the configurer component as discussed in Section 3.3.4), in order to determine 
whether new agents should be launched.  If an agent is to be killed, it removes it from the 
simulation (only the creator of an agent or the agent itself can destroy an agent).  If a new agent 
is to be launched, the TestBedElementsGenerator extracts the appropriate class information or 
class instance references from the experiment’s TestBedElementsGeneratorSchedule class 
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instance and uses Java reflection (as discussed previously) to create the agent and launches it into 
the simulation. 

In response to a single request or schedule time, the TestBedElementsGenerator can generate 
an individual agent (a new UAV or task) or multiple agents with randomly selected parameters.  
An example of the latter case is the generation of a large number of target ground sites at the 
beginning of an experiment simulation run: the geo-locations, the type, and the value 50 to 100 
ground sites are generated randomly.   

After an agent is launched or destroyed the TestBedElementsGenerator sends messages to 
other agents informing them of the event.  For example, the two- and three- dimension displays 
use these messages to provide graphic representations and annotations.  Each UAV agent is 
notified when a new known ground site is added and when a completely serviced site is 
removed.  The data recorder receives all such agent launch and kill messages. 

4.2.7 Air Vehicles 
An experimenter inserts agent implementations into TTAS through Air Vehicles.  We have 
defined a set of APIs as Java Interfaces for Air Vehicles in the airvehicle Java Package.  The 
major Air Vehicles’ API Interfaces and their purposes are listed in Table I.  Reference 
implementations of some of these Interfaces, which can be used in most OEF MAS simulations, 
are part of the basicvehicle Java Package.  We designed the Air Vehicles part of TTAS and the 
reference implementations to be highly modular.  For a particular physical air vehicle, such as a 
vertical-takeoff-landing (VTOL) hoverable UAV, only the agent implementation that controls 
the air vehicle needs be changed to investigate a different approach to coordination and 
adaptation.  As discussed above, with respect to TTAS this change is isolated to the modification 
of a few lines in the configuration file.  Of course, the new agent must implement the Java 
Interfaces identified in Table 1.  Only Java primitives and classes, MadKit classes, and TTAS 
classes are referenced in any of the APIs. 

TTAS air vehicles are MadKit agents and must extend the madkit.kernel.AbstractAgent 
class as well as implement TTAS’ Vehicle_I interface (and the 
madkit.kernel.ReferenceableAgent, which is necessary for the agent to execute within 
MadKit’s synchronous engine).  Fig. 5 displays schematically the layout of the BasicVehicle 
reference implementation.  We have designed and implemented a  

Interface Name Purpose 

Vehicle_I Defines methods TTAS needs to gain access to internal parameters 
of an air vehicle.  Includes the moveOn method invoked by the 
Vehicles driver (Activator) and methods to retrieve references to the 
physical state of the vehicle, the environment surrounding the 
vehicle, the plan the vehicle is following, and the agent controlling 
the vehicle.  A Java class for an Air Vehicle (UAV) is a Java 

Table 1. The TTAS APIs for Air Vehicles. 
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extension to MadKit’s AbstractAgent class that implements this 
Interface.  A reference implementation that can be used by most 
MAS is basicvehicle.BasicVehicle.  

VehicleState_I The physical state of the Air Vehicle is encapsulated within 
implementations of this Interface.  The quantities that must be part of 
the physical state are a unique identifier object (usually the MadKit 
generated AgentAddress instance), the three-dimensional position, 
velocity, and acceleration, the simulation elapsed time at which this 
state was valid, the three-dimensional orientation of the Air Vehicle 
(with respect to vehicle’s center), the current navigational mode, and 
an indicator of whether or not the vehicle has undergone a collision.  
The reference implementation is basicvehicle.BasicVehicleState. 

VehicleAgent_I Defines the TTAS API for the actual agent that is the subject of 
research.  Implementations are encapsulated within the Air Vehicle, 
such as BasicVehicle.  Defines the method update that must be 
called at each time-step and the parameters that are part of the call.  
Also defines a method of retrieving and sending messages since the 
Air Vehicle itself is the MadKit agent that receives and sends 
messages.  No reference implementation. 

nullAgent_I An extension to VehicleAgent_I that can be used to handle 
autonomic responses, that is, reactions to situations in the 
environment that should/can be taken immediately without invoking 
the complete intelligence of a full-blown agent.  Collision and threat 
avoidance and waypoint-based navigation are examples.  Intended 
to encapsulate quick-response survival and locomotion behaviors.  It 
is possible to isolate knowledge of the kinematics of the Air Vehicle 
necessary for locomotion and navigation here.  No reference 
implementation. 

VehicleParameters_I Defines retrieval methods for the performance parameters of the Air 
Vehicle, which are used by the VehicleController_I and may be used 
by the nullAgent_I.  Includes maximum acceleration, deceleration, 
climb rate, descent rate, and speed; minimum and cruise speeds; 
mass; dimensions; and type.  No reference implementation.  

VehicleConstraints_I Defines retrieval methods for sensor and communication distances.  
Task (ground site) sensor constraints can depend upon the type 
(Java class) of task and the speed of the air vehicle.  Maximum 
awareness and communications distances to other air vehicles and 
the minimum distance allowed between vehicles can depend upon 
the relative closing speed.  No reference implementation. 

VehicleEnvironment_I Defines the methods for accessing the position of other air vehicles 
and of tasks consistent with the data encapsulated within the 
VehicleConstraints_I implementation and referenced relative to the 
current air vehicle of interest.  A reference implementation is 
basicvehicle.BasicVehicleEnvironment. 

VehicleCommand_I Indicates a navigation or service command.  Can be issued by the 
Agent_I or nullAgent_I implementations.  Navigation commands are 
interpreted by the VehicleController_I implementation and service 
commands by the VehicleService_I implementation.  Reference 
implementations for acceleration and deceleration, ascent and 
descent, and heading changes. 

VehicleCommandLoad_I A data structure into which VehicleCommand_I instances can be 
placed and retrieved.  basicvehicle.BasicCommandLoad is a 
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reference implementation as a FIFO queue. 
VehicleController_I Defines the method update that must be called at each time step to 

move the air vehicle.  Translates the navigational commands into 
simulated physical motion through use of the kinematics model 
implemented within it and the parameters of the 
VehicleParameters_I implementation.  Reference implementations 
for fixed wing and for hoverable air vehicles. 

VehiclePlan_I If an air vehicle is to follow a pre-generated or real-time generated 
plan, the plan must implement this Interface.  No reference 
implementation, but a test implementation based upon waypoints is 
available. 

VehiclePlanState_I Intended to capture the current state of the execution of a 
VehiclePlan_I. No reference implementation, but a test 
implementation based upon waypoints is available. 

VehiclePlanManager_I Manages a VehiclePlan_I implementation. No reference 
implementation, but a test implementation based upon waypoints is 
available. 

VehicleService_I An interface for the management of sensors or of a component that 
services a task in some manner. No reference implementation, but 
several test implementations are available. 

VehicleServiceState_I Captures the current state of a sensor or service component. . No 
reference implementation, but several test implementations are 
available. 

VehicleControlsGUI_I If used or enabled provides visual access to at least the physical 
state of the air vehicle.  Can be used to display the state of the agent 
in control of the air vehicle or, with the implementation of controls, to 
control the air vehicle and its parameters.  No reference 
implementation. 

 
VTOL, hoverable air vehicle kinematics model (the OEF UAV-β) for the nullAgent_I and 
VehicleController_I APIs within the BasicVehicle implementation.  For test purposes, we use 
the parameters of the Moller Skycar (http://www.moller.com/skycar/).  A primary assumption of 
our implementation is that only straight-line (rectilinear) motion occurs during a single time step, 
which implies the following: 

 Heading changes applied at beginning of time step 

 Velocity at end of time step = acceleration × time step length (v = a∆t) 

 Position at end of time step = beginning position + velocity at beginning of time step × 
time step length + ½ × acceleration × time step length2 (p(t0 + ∆t) = p(t0) + v∆t + ½ a∆t2) 
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The nullAgent_I implementation navigates between waypoints (a waypoint is a position, an 
optional time, and an optional velocity) where target ground site (tasks) locations are denoted by 
waypoints and has several navigation modes (CRUISE_LEVEL_FLIGHT, ASCENDING, DESCENDING, 
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ZERO_VELOCITY_Z, ACCELERATING_XY, DECELERATING_XY, ZERO_VELOCITY_XY, STATIONARY, 
and DECELERATING_XY_TO_ZERO_VELOCITY_XY).   

4.2.8  Tasks 
TTAS Java Package job contains the Tasks APIs defined as Java Interfaces.  Analogous to Air 
Vehicles we created reference implementations for OEFexperiments.  The Tasks Interfaces and 
purposes are listed in Table 2.  The target ground site class of the OEF is  

Interface Name Purpose 
Task_I Indicates to TTAS that this object is to be treated as a task 

within the simulation and provides methods to retrieve the 
internal parameters of the task.  Defines the method update that 
is called at each simulation time step, which is when the 
implementation performs computations.  No reference 
implementation but two test implementations: (1) WaterTank, 
which realizes the simple notion of a task with capacity that can 
be serviced simultaneously (or sequentially) by multiple agents 
and (2) TargetTask, which are the ground sites of the OEF. 

TaskState_I Defines methods to retrieve the parameters of the physical state 
of the task.  The quantities referenced are a unique identifier 
(usually the MadKit generated AgentAddress), the three-
dimensional position, the simulation elapsed time at which this 
data was valid, an indicator of whether or not the task is 
completely serviced, and the simulation elapsed time at which 
this task was serviced.  job.TaskState is a reference 
implementation.  WaterTankState and TargetTaskState 
correspond to the test implementations described above. 

TaskCharacteristics_I Implementations have methods to retrieve parameters that 
characterize a task.  No reference implementation.  
WaterTankCharacteristics specifies capacity, maximum service 
rate, and physical dimensions.  TargetTaskCharacteristics 
specifies the task type (as specified in the OEF one of A…F) 
and value.   

TaskCharacteristicsRanges_I Implementations provide methods for retrieving the extremes of 
the parameters encapsulated within TaskCharacteristics_I 
implementations.  Used by the TestBedElementsGenerator to 
generate random values for these parameters. 

Connector_I Defines methods for a servicing agent to connect to a task.  No 
reference implementation.  WaterHose is the connector for the 
WaterTankTask..  (The WaterPump service manager in an air 
vehicle connects to a WaterTank through the WaterHose, for 
example. 

TaskServiceCommand_I Indicates that the class should be interpreted as a command 
that concerns servicing a task.  No reference implementation. 

 
 

Table 2. The TTAS APIs for Tasks. 
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an extension of the madkit.kernel.AbstractAgent class and an implementation of the 
job.Task_I and madkit.kernel.ReferenceableAgent interfaces.   

4.2.9 The TTAS Simulation Environment Component 
The TTAS Simulation Environment component, nullAgent.util.EnvironmentObserver, 
updates each Air Vehicle’s knowledge of its locale (the VehicleEnvironment_I 
implementation such as the BasicVehicleEnvironment reference implementation) consistent 
with the constraints encapsulated within the VehicleConstraints_I implementation.  
EnvironmentObserver is an extension to the MadKit class madkit.kernel.Watcher that was 
references to registered madkit.kernel.Probe instances, which hold references to all the MadKit 
agents of a specific group and role.  For example, EnvironmentObserver retrieves the positions 
and velocities of each Air Vehicle, checks which are within the maximum visibility constrains to 
the Air Vehicle whose locale is being updated, and performs the transformations necessary to 
reference to this Air Vehicle the positions and velocities of those that are visible.  The 
transformations use the three- and four-dimensional matrix transformation classes of the Java 3D 
Package javax.vecmath.  Air Vehicle centric information about tasks is updated similarly.  
Since madkit.kernel.Watcher is a MadKit agent, so is EnvironmentObserver, which is why it is 
called with the TestBedSimulation looping cycle. 

4.2.10 TTAS Umpire Component 
The Umpire performs several functions.  It handles simulation-, group-, and/or role-wide 
message broadcasts; it can verify completion of task service and dispense rewards; and it can 
enforce the rules-of-the-game.  As with the EnvironmentObserver class Umpire is an extension 
of the MadKit madkit.kernel.Watcher class and through the registered madkit.kernel.Probe 
instances has access to all agents of specified groups and roles.  It also is a MadKit agent. 

4.2.11 TTAS Data Recorder 
The StorageWatcher (the Data Recorder ccomponent), when enabled, writes all messages 
exchanged between air vehicles and tasks (if any) in the relational database through the JDBC 
connection established at simulation startup. The relational schema into which data is recorded is 
created at execution time, which implies that each experimental data set is a separate database 
instance.  The current implementation (when enabled) records the physical state of each air 
vehicle and its local environment at each step. The StorageWatcher is also an extension of the 
MadKit madkit.kernel.Watcher class. Redesign underway to record user specified data at 
specified time intervals.   

We use the Mckoi SQL Database, which is Open Source and implemented in Java. The Mckoi 
database can be embedded within TTAS, but TTAS execution is slowed as a single JVM handles 
both TTAS and the database.  Generally we use Mckoi as a standard (remote) database server 
that executes within its own JVM.  In this configuration performance is acceptable even when 
TTAS and Mckoi are on the same computer.  As noted in Section 3.3.2, since all database access 
occurs through JDBC, any database can be used with suitable implementations of the TTAS API 
(Java Interface) JDBCStorageHandler_I.   
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4.2.12 Two Dimensional View 
The Two Dimension Display provides a downward looking, wizard’s view of the simulation 
world. It displays the locations of air vehicles and tasks; can change a task’s color after the task 
is serviced; and can display air vehicle and task identification.  A coordinate grid is displayed 
divided as appropriate to the simulation world size into units of 1, 2, 5, or 10 kilometers.  The 
display is implemented in Java Swing with Java graphics as an extension to the 

madkit.kernel.Watcher class.  In general this display is intended for debugging MAS 
implementations and experiment configurations.  Our plans include extending the Two 
Dimensional View to include terrain and other geographic features such as road and buildings.  
A screen shot of the current Two Dimensional View is displayed in Fig. 6. 

4.2.13 The Three Dimensional View 
The Three Dimensional View provides a true three dimensional view of the locale surrounding 
the camera position. The camera position can be selected to be the position of a specific task and 
can be rotated through all three angles and moved through all three linear dimensions via mouse 

Figure 6. TTAS' two-dimensional display 
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movement.  The Three Dimensional View is Implemented in Java 3D as an extension to the 
MadKit’s madkit.kernel.Watcher class.  Planned extensions include zoom, terrain, geographic 
features, and views from a UAV, which will be quite interesting when terrain is included in the 
simulation. 

4.3 Milestones and Future Directions 

4.3.1 Milestones 
During this period of performance we developed a working implementation of the Testbed for 
Taskable Agent Systems that supports experiments on Multi-Agent Systems of UAVs 
collaborating to find and survey ground targets.  Different approaches to coordination and 
adaptation can be investigated quantitatively by simply replacing the agents that control the 
UAVs.  Standard experiment configurations are archived in a reusable XML-based configuration 
file.  Post-experiment analysis is made possible by extensive data recording to a relational 
database.  A complete set of APIs is provided for air vehicles and tasks.  Reference 
implementations of these APIs are provided for UAVs and target ground sites. 

4.3.2 Future Directions 
Complete enhancements necessary to support all OEF design problems, such as moving targets, 
unreliable information, cross mission tasking, and time critical targeting.  Include terrain and 
geographic features and the effects of terrain on line-of-sight sensing and communication.  Test 
proposed OEF experiment configurations and establish baseline measurements for these 
configurations.  Test kinematics models for fixed wing UAVs.    Use a simulation platform for 
Alphatech’s research.  Work with TASK PI organizations in order to perform experiments in 
TTAS on their approaches to the OEF design problems. 

5 Cooperative Learning and Dynamic Control MAS 
Research 

Our work has been focused on Multi-Agent System (MAS) problems in which each agent is 
required to make a series of online decisions based on its belief about the state of its 
environment.  Each agent is an independent and distributed participant in the MAS, whose 
purpose is to maximize the MAS performance through local action.  By developing new 
technologies for coordination and adaptation within the context of a MAS formulation of a UAV 
problem, our work will help facilitate advances in DoD capabilities in surveillance, targeting, 
biological/chemical monitoring, and battlefield command and control, just to name a few.  These 
new capabilities for long-term, autonomous UAV missions will dramatically increase the DoD’s 
information superiority, while simultaneously reducing the risk for loss of human life. 
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As depicted in Figure 7, in our formulation each agent decision results in the execution of an 
action, the result being a transition to a new state and a real-value reward reflecting the 
immediate value of the new state.  We are interested in MAS problems where the agents are 

learning about their environment incrementally.  We further characterize this as Reinforcement 
Learning by limiting the agents to a feedback value that reflects the immediate efficacy of an 
action as a function of the state transition that it invokes, but not an omniscient response 
indicating the correct action for the current state, as would be the case with a Supervised 
Learning approach. 

When using Reinforcement Learning for control, the objective is generally to learn a value 
function for either states or state-action combinations such that a policy function, π(s), can be 
defined in terms of the value function and used to compute the action that the agent will execute 
in any state s. From dynamic programming, we know that one general method for optimal policy 
computation is as follows:  

 

 

Where V(s') is the expected value of state s'. 
Although there are well-known Reinforcement Learning algorithms that are suitable for many 
Markov Decision Processes, learning the value functions can be computationally challenging as 
the complexity of the environment grows.  By the law of large numbers, Reinforcement Learning 
algorithms are proven to converge to optimal policies if they systematically explore the totality 
of the state and action space infinitely often. Large state spaces or those with continuous 
attributes, as well as large action spaces, can all contribute to the complexity of the environment 
and intractability of obtaining good solutions.   

Agent

Environment

State Reward Action

Agent

Environment

State Reward Action

AgentAgent

Environment

State Reward Action

Figure 7. Interaction between the agent and its 
environment in a Reinforcement Learning context
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5.1 Objective 
Our research objective has been to allow heterogeneous agents operating as a Multi-Agent 
System to each benefit from the collective learning capabilities of the entire group.  Specifically, 
we would like our agents to be capable of exchanging and exploiting learned knowledge.  We 
expect to achieve several benefits from knowledge sharing. 

• Divide and Conquer - Large, complex state spaces or large action spaces can all cause the 
computational demands of the learning problem to explode.  Multiple agents each attacking 
different parts of the same problem will reduce these demands for individual agents. 

• Expanding Capabilities - Intuitively, heterogeneous agents will often have heterogeneous 
capabilities, in terms of perception or actions, which correlate to the type or fidelity of the 
agent's observations about the environment.  An ability to exchange the subsequently derived 
knowledge would allow all agents to take advantage of the aggregate of the group's 
capabilities. 

• Credit Assignment - A problem that frequently complicates reinforcement learning 
applications is that of assigning appropriate credit to states or actions for their contribution to 
achieving goals.  The sequential experiences encountered by an agent make it difficult to 
separate the salient interactions from those that are coincidental.  The iterative exchange of 
learned knowledge may provide each agent with multiple points of reference for determining 
true causality. 

• Improving Quality - Related to the desire to reduce the computational demand of learning in 
large spaces, we would also like to have the agents achieve beneficial performance more 
quickly.  Allowing agents to benefit from the mistakes of others will reduce the collectively 
accumulated penalty for incorrect actions. 

5.2 Reinforcement Learning 
Reinforcement learning can best be thought of as a classification of a learning problem [3, 8], 
rather than a specific solution.  Reinforcement learning algorithms iteratively derive a value 
function for states or state-action pairs.  Any algorithm that accomplishes that goal can be 
classified as a reinforcement learning algorithm.  Reinforcement learning differs from traditional 
supervised machine learning in that there is no omniscient supervisor that provides the agent 
with examples of optimal behavior. Instead, the learner relies on iterative rewards that indicate 
the efficacy of an action or sequence of actions in terms of the value of the states to which the 
agent is transitioned.  It also differs from unsupervised learning in that there is some external 
feedback with which the learner can measure its efficacy, where unsupervised learners rely on 
self-assessment to measure their progress. 

Exploitation vs. exploration is an important consideration in the formulation of a Reinforcement 
Learning solution.  To learn the value of states and actions, an agent must explore its range of 
actions over the range of the state space.  To accomplish this, the agent must at times act against 
what it believes is the best course of action.  The agent must eventually arrive at some synergy 
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between exploration and exploitation to act successfully in the environment. The intractability of 
exploring large environments is a key motivation for this work.   

SARSA(λ) 

The SARSA(λ) algorithm [8] serves as the model-free Reinforcement Learning algorithm for our 
initial research.  The SARSA algorithm derives its name from the quintuple {st, at, rt+1, st+1, at+1} 
(state-action-reward-state-action).  SARSA is considered an on-policy control algorithm, since 
the policy that's being continuously updated is simultaneously used for control.  The algorithm is 
model-free since it operates with no model of the environment dynamics.   The use of an 
eligibility trace e(s, a), to propagate a portion of the reward back through the sequence of state-
action pairs that allowed the agent to arrive at the reward state is particularly effective in 

speeding up the convergence of the SARSA(λ) algorithm.   

5.2.1 Cooperative Learning 
The algorithm in Figure 8 is the tabular form of SARSA(λ), meaning that it is suitable for 
discrete state spaces where each state variable takes on a relatively small number of values, such 
that Q(s,a) can be fully enumerated in matrix form.  The set of states, S, and actions, A, are 
developed in accordance with classic Markov Decision Process formulations, discussed in a wide 
array of literature, and only affect the SARSA(λ) algorithm and our proposed work to the degree 
that they impact the scalability of the algorithm itself.   

Although the primary focus of this work is to incrementally assess the quality of an agent's 
evolving knowledge, it should also be noted that under some circumstances knowledge 
representation would play a key role in knowledge sharing.  Part of our research objective can be 

Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s, a 
Repeat (for each episode): 
Initialize s, a 
Repeat (for each step of episode) 
 Take action a, observe r, s’ 
 Choose a’ from s’ using policy derived from Q 
 ),()','( asQasQγrδ −+←  
 1+← ),(),( asease  
 For all s,a: 
  ),(),(),( aseαδasQasQ +←  
  ),(),( aseγλase ←  
 ';' aass ←←  
until s is terminal 

Figure 8. Tabular SARSA(λ) online learning and control algorithm 
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viewed as an attempt to develop a method by which agents can parallelize the process of learning 
about the environment. Like most efforts to parallelize algorithms, the challenging aspect is the 
reintegration of the n partial solutions.  Some heterogeneous agent systems will inevitably have 
varied sub-goals, unique value/cost functions, and different perception and action capabilities.  
Clearly these attributes will all affect the internal knowledge representation of the agent, causing 
the knowledge held to be situational, severely complicating any exchange and integration of 
knowledge.  Therefore a generalization mechanism must be employed for agents operating under 
these circumstances.  Relevant work has been accomplished in agent communication languages 
and knowledge interchange formats, but substantial challenges remain with regard to the impact 
of learning and local valuation in heterogeneous agent systems.  In addition to this challenge, the 
fact that an agent will now have multiple perspectives on which to base decisions introduces a 
totally new quantity of information.  There is significant research to be done to address the 
meaning that can be derived from the comparison of multiple models learned in the same 
environment and to define a suitable set of actions that the agent can use to exploit this 
information.  Actions may include the ability to exchange deeper information to elucidate the 
motivation for a learned function or to further constrain or expand exploration processes. 

5.3 Quality of Knowledge 
One of the first questions we think about in terms of agents exchanging their learned functions is, 
should agents exchange all information or just good information and how do we measure 
goodness?  In our context, good information is a Q-function value in which the agent has a high 
degree of confidence, where the measure of confidence reflects the convergence of the estimated 
value to the true value. The SARSA(λ) algorithm is a process used to repeatedly refine an 
estimate of the value of executing a specific action in a specific state.  So at any given time, we'd 
like our agent to be able to determine how confident it is that the estimated value is close to the 
actual value.   

Our approach is to incrementally apply statistical confidence interval measurements to this 
problem, which are widely addressed in inferential statistics literature.  The general idea behind 
our approach is that the learned Q-values for state-action pairs, Q(s,a), will be relatively volatile 
while the values are still in the process of converging to their true values under the current 
policy.  By establishing a threshold within which we determine the true value must lie with 
respect to the running estimate and establishing a confidence measure with which we require the 
measurement to adhere, we can evaluate the agent's belief about the quality of its learned 
knowledge.  It is important to note that the quality value we are measuring is the stability of a 
learned value under a given policy, π.  This has implications with respect to changing policies 
during the course of learning, generally done to reduce exploration in favor of exploitation.  We 
will discuss these implications in the following sections. 

5.3.1 Quality Measurement 
In this section we discuss our quality measurement approach in detail.  We assume the reader's 
familiarity with basic statistical measures, such as the mean and standard deviation.   
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To calculate the confidence metric, we'll need to derive a few statistical measures of the Q-
function distribution, the first being the standard error [2, 5], defined in Equation 2: 

 

Where θ is the parameter being estimated, σ is the standard deviation of the sampled parameter 
values, and n is the sample size.  The standard deviation can be computed using Equation 3. 

 

Where ∑ 2x  is the sum of the squared individual deviations, n is the sample size, and σ2 is the 
variance.  Formally, we are estimating the standard deviation so the use of σ, which typically 
refers to the true value, is incorrect.  Henceforth all references to the standard deviation are 
references to the estimated value, which will be represented by S.   

This method of computing the standard error isn't suitable for our approach because our agents 
are collecting samples sequentially, whereas Equation 3 is meant to be applied to a static sample 
set.  Saving all data points to recompute the standard deviation isn't computationally feasible, 
however Equation 4 can be used to incrementally compute a running average for any parameter 
θ. Since the standard deviation is an average of individual deviations, Equation 4 can be readily 
used for our purposes. 

 

 

Where θ is the parameter for which the average is being calculated, θt is the observed value of 
the parameter at time t, and F(θ)t is the computed average of θ at time t.  Equation 4 assumes that 
one observation of θ is received at each timestep t. 

Normally one computes the standard deviation by averaging the distance between each sample 
point and the Central Tendency, with the mean being the most common measure of Central 
Tendency.  In our case, since we are applying these calculations to the SARSA(λ) algorithm, the 
work of estimating the Central Tendency of each Q(s,a) is being done for us by the algorithm.  
Therefore, we can use the current estimate, Qn(s',a') as the measure of Central Tendency, where n 
is the nth time action a' has been executed in state s'.  Equation 5 illustrates the application of 
Equation 4 to the SARSA(λ) parameters. 

 

 

Where )'a,'s(S n
2  is the variance of Qn(s',a') after the nth time action a' has been executed in state 

s'. 
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Using Equation 5, we are able to fold the deviation of the current value, Qn+1(s',a'), into the 
running standard deviation.   

Although Equation 5 provides us with an efficient means of calculating the standard deviation 
and therefore the standard error, it may be desirable to attenuate the affect of older data points on 
the running calculation of the standard deviation, since the learned values, Qt, should generally 
be getting closer to the true values, Q*. 

To do this, we would normally compute a moving average over a sliding window of the past m 
data points, where m ⊥ n.  However, the incremental approach illustrated in Equation 5 does not 
lend itself to a sliding window implementation because there is no way to extract the influence of 
historical data from the running statistic. Storing the past m data points and recomputing the 
measurement is also an unappealing option for obvious reasons.  An alternative is to use 
exponential smoothing, illustrated in Equation 6, to compute the running average.   

 

Where ω is a weight parameter between [0,1] that controls the emphasis on old versus new data 
points, θ is the parameter for which the average is being calculated, θt is the observed value of 
the parameter at time t, and Ft(θ) is the computed average of θ at time t. 

Exponential smoothing is a process used in time-series analysis to incrementally compute a 
weighted average, with the influence of older data points on the mean being attenuated 
exponentially.  The expanded form in Equation 7 depicts this point.   

 

 

Where θt is the observed value of the parameter θ at time t, and Ft(θ) is the computed average of 
θ at time t. 

In time-series analysis, exponential smoothing is typically used for prediction.  Although we 
would not use it for that purpose, using it to maintain the standard deviation may cause the 
standard error to more accurately represent the agent's current knowledge.  Although our 
preliminary experiments with the exponential smoothing technique showing promising results, 
we have not yet validated the applicability of the method.  Exponential smoothing is meant to be 
applied only when the sample data points are independent, which in a practical sense means that 
each point conveys an equal amount of information to the estimation process.  It is not clear that 
this is the case during the volatile stages of the learning process.  Our future work will address 
this in more detail.   

Equation 8 illustrates our adaptation of the exponential smoothing function to incrementally 
compute the standard deviation of the Q-function estimate. 
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Now that we have a means by which we can incrementally compute the standard error, we're left 
with the question of how to assess the agent's confidence in its current estimate of Qn(s',a').  
More specifically, we want to answer the question, “are we φ% confident that the true value 
under the current policy, Q*(s'a'), is within some acceptable range, ∆, of the current estimate, 
Qn(s',a')?''  To answer this question we can compute a confidence interval using the statistics 
we've derived thus far.  More precisely, we will determine how low the standard error must be in 
order for the agent to be φ% confident that the estimate falls within the required range.   

For illustrative purposes, we will arbitrarily say that the agent must be 95% confident that the 
estimate is within Qn(s',a')±∆, which we refer to as a 100(1-α)% confidence interval, where 
α=.05.  This is illustrated in Equation 9.   

 

The 95% confidence interval is a commonly adopted threshold in statistical applications, 
although any threshold can be computed with the same process. 

Since both the central tendency, Qn and the standard deviation, S, are estimates, we will use the 
T-distribution to compute the confidence interval [5] on Q*. 

Equation 10 represents the density interval of interest and is plotted in Figure 9.   
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Since our real goal is to determine a bound on the standard error of Qn(s',a'), from Equations 9 
and 13: 

 

 

 

 

 

We can now see from Equation 14 that we have a bound on the standard error that provides us 
with 95% confidence that Q*(s',a') is within ∆ of our estimate, Qn(s',a').  The general form for 
any 100(1-α)% confidence interval is illustrated in Equation 16: 

 

 

The tα/2 term is obtained from the T-distribution table based on the confidence required by the 
human designer and the degrees of freedom γ, where γ = (n-1), n being the number of data points 
over which the interval is computed.  For reasonably large sample sizes (>120) we can simple 
use the standard normal values.  The ∆ parameter can be provided as a constant value or 
calculated as a specified ratio to the Qn(s',a') estimate itself.  We will empirically evaluate these 
options as our research proceeds. 

Figure 9.  As the degrees of freedom approach infinity, the T distribution converges to the Standard 
Normal curve. 

 

 

 



 

 46  

5.3.2 Experiment 
We used a 100-cell grid as the environment for this work, illustrated in Figure 11.  The agent is 

1)  Initialize Q(s,a)  & σ(s,a) arbitrarily and e(s,a)=0, η(s,a)=0 for all s, a    * 
2)  Repeat (for each episode): 
3)  Initialize s, a 
4)  Repeat (for each step of episode) 
5)   Take action a, observe r, s’ 
6)   Choose a’ from s’ using policy derived from Q (e.g. ε-greedy) 
7)   ),()','( asQasQγrδ −+←  
8)   1+← ),(),( asease  
9)   For all s,a: 
10)   β ← Q(s,a)        * 
11)   ),(),(),( aseαδasQasQ +←  
12)   If (e(s,a) > 0        * 
13)    η(s,a) ← η(s,a) + 1      * 
14)    )]'a,'s(S))'a,'s(Q)'a,'s(Q[(

n
)'a,'s(SS nnnnn

22
1

2
1 1

1
−−

+
+← ++

 * 

15)    )]'a,'s(S)[()]'a,'s(Q[)'a,'s(S n
22

1 1 ωβω −+−←+   * 

16)   ),(),( aseγλase ←  
17)  ';' aass ←←  
18) until s is terminal 

Figure 10. Cooperative SARSA(λ) online learning and control algorithm 

 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10

start

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,10

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 7,10

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9 8,10

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9 9,10

100

10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 10,9 10,10

10

Figure 11. Experiments were 
conducted on a 10X10 grid 
environment with two terminal 
states, with values 10 and 100 
respectively 
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using our modified SARSA(λ) algorithm (illustrated in Figure 10) with an ε-greedy policy.  We 
attenuate ε according to the schedule illustrated in Figure 12.b. 

5.3.3 Preliminary Analysis 
Figure 13 illustrates the progression of the confidence metric for the best (most valuable) action 
in each state over the course of the episodic experiments.  Areas represented in white are those 
for which the agent's computed standard error falls beneath the required threshold, indicating a 
strong degree of certainty about the stability of the value.  Areas in black represent the values 
that fall above the required threshold.  The first attribute to note is the anomaly that occurs in the 
graphic for the 100th episode.  The agent appears to be confident in the values for the state-
actions in the lower left corner, which occur in close proximity to the start state (1,1).  In reality, 

at the 100th episode those values are still far from the true value associated with the optimal 
policy. This anomaly occurs due to the nature of reinforcement learning, since the values for 
state-actions that are far from the reward states receive very little propagated reward during the 
early stages of learning.   

This problem is further exacerbated by the fact that our experiment has a consistent start state for 
each episode, meaning that the states and actions in the lower left quadrant are visited with a 
high frequency.  These two situations combined fool the agent into believing that the values for 
these state-action pairs are stable.  We have begun to experiment with potential remedies as our 
research continues.  What begins to emerge in the subsequent measurements is a band of 
certainty around the optimal policy.  Terminal states are denoted as uncertain because no actions 
are executed within them and consequently no measurements are made.  Areas denoted as 
uncertain remain so because the agent does not visit these states often enough to acquire enough 
stable data for the standard error to fall below the threshold.  It is unclear at this point of our 
analysis whether the Q-values fail to converge or the agent just doesn't experience the state-

  

Reward

Steps

Episode # Episode #

(a) (b)

Figure 12. (a) Convergence of reward and # of steps executed by agent.  (b) Attenuation of ε 
value. 
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actions for a long enough period of time after convergence.  The agent's ability to measure a 
stable value lags behind the actual appearance of the stable value because the agent needs to see 
a sufficiently long sequence of values to compute the measurement. 

Figure 14 illustrates further measures for sub-optimal actions, indicating a relatively large set of 
information for which the agent has achieved a desired level of certainty. 

certain

uncertain

300th episode 400th episode 500th episode

600th episode 700th episode 800th episode

100th episode 200th episode

Figure 13. Certainty measurements for optimal actions, at 100-
episode sampling increments

North at 800th episode

certain

uncertain

South at 800th episode

On policy at 800th

episode

East at 800th episode West at 800th episode

North at 800th episode

certain

uncertain

South at 800th episode

On policy at 800th

episode

East at 800th episode West at 800th episode

Figure 14. Measures for all actions at 800th episode. 
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5.4 Continuing Research and Future Direction 
Now that we have developed a theoretical premise for measuring the quality of an agent’s 
knowledge, we have begun to develop a full-scale control algorithm for individual agents and a 
means by which this algorithm can incorporate notions of multi-agency and the added dynamics 
inherent in a Multi-Agent System. The initial objective is to develop a Partially Observable 
Markov Decision Problem (PO-MDP) [1, 7] formulation, which will allow agents to minimally 
interact with peer agents and coherently execute search and surveillance actions.   

Since our work is predicated on the notion that agents are making sequential decisions, it is 
important to formally describe this problem family and discuss how our research will contribute 
to current methods. 

5.4.1 Sequential Decision Problems 
Sequential decision problems are generally discussed in the context of two discriminating 
features.  The first is the Markov property, which requires that the agent's percept provide 
enough information to identify the current state of its environment at each decision point.  The 
second is the accessibility of the environment, which describes the degree to which the agent can 
directly observe the true state of its environment.  A fully accessible environment is one in which 
the agent's percepts are direct observations of the full set of state variables.  Markov Decision 
Problems are those that obey the Markov property in fully accessible environments.  Formally, 
an MDP can be specified as a 4-tuple {S,A,T,R}, where: 

• S is a finite set of environment states 

• A is a finite set of actions available to the agent 

• R is a reward function that maps from the states S to real-valued rewards R:SXA→ℜ 

• T is a transition function that maps T:SXA→Θ(S), where Θ(S) is the state transition 
function specifying a discrete probability distribution a

'ssP , which is the probability that 
the agent executing action a in state s will transition to state s’ for all a∈A and all s,s’∈S 

More generally, we refer to a kth-order MDP, where the agent must consider the last k states 
visited to compute the transition probabilities as P(Sn=sn |.an-1,Sn-1,…,Sn-k).  By allowing k →∝, 
any fully accessible sequential decision problem can be formally represented as an MDP, 
although it would not always be practical to solve it as such. The definition above refers to a 1st-
order MDP. 

Unfortunately, like the TASK family of problems, many realistic problem environments are not 
accessible [4, 6] and therefore policies cannot directly be derived using standard MDP methods.  
These problems are instead considered Partially Observable Markov Decision Processes 
(POMDP), a sequential decision problem in which the agent must select actions without certain 
knowledge of the current state of the environment (inaccessible). The general solution approach 
for a POMDP is to compute a probability distribution over the possible states at each timestep 
and treat the problem as an MDP [1, 6], using the distribution as the state signal. Formally, a 
POMDP can be represented as a 6-tuple {S,A,T,R,O,B} where: 
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• S, A, T, and R are defined as they are for the MDP 

• is a finite set of observations that the agent receives at each timestep in place of the true 
state signal 

• B is a belief model that maps B:SXA→Θ(O), where a
soBρ is the probability of observing o

ρ 
in state s after the agent has executed action a. 

The agent would then use the probability distribution across states to make a decision about 
which action to execute. 

5.4.2 Problem Parameters 
We will abstract away much of the MAS complexity for the initial problem formulation, 
allowing us to test initial concepts and put a mechanism in place on which we can build more 
complex approaches to more complex problems. 

We would like our agent controller to eventually be capable of dealing with a problem like the 
following: 

An agent possesses information about 8 tasks of the agent’s type, 3 known, varied-value tasks that are 
distributed geographically and 5 unknown tasks, each with different ages (quality) associated with the 
knowledge, and 3 agents within detection (but not communication) range, and 1 agent within 
communication range.  At the agent’s disposal is a set of actions that will allow it to act on its current 
knowledge or seek out additional knowledge.  The agent can attempt to service the known tasks, to 
communicate with known peers, or explore the environment for new tasks or peers.  What should the 
agent do? 

The primary question is, under what set of circumstances is each action a provably good choice? 

This problem is described from the perspective of the agent’s knowledge.  Notice that there are a 
few salient pieces of information missing that make this problem very difficult, namely the true 
location, type, and value of all unserviced tasks, the locations and types of all agents, and the 
intentions of all agents.  And of course one final complicating detail is that all of this information 
changes at each time step because of the unobservable randomness associated with the actions of 
other agents and the evolving system dynamics.  Addressing this problem in its full complexity is 
a goal toward which we will work, but not the starting point. 

We’re starting our work from the basic formulation of a Partially Observable Markov Decision 
Process (PO-MDP).  Solving a PO-MDP means providing the agent with a means for selecting a 
good action at each decision point, based on the cost of that action in a particular state20.  Since a 
PO-MDP assumes the true state is unavailable, the agent will make the calculation based on a 
probability distribution over states.  We compute this probability distribution based on a model 
of state transitions and an estimation function that probabilistically maps observed evidence to 
states.  The cost is then computed via a function that yields the cost of actions based on the 
                                                 
20 This isn’t to imply that the policy involves only a 1-step measurement of value/cost.  The true policy may rely on 
a cost function that includes a notion of looking ahead across some finite horizon of transitions reachable from the 
current state, complicating the cost calculation.  Recursive definitions of cost/value might incorporate this notion 
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probability distribution over the current state and the probability of the states to which the agent 
could transition.  These elements are detailed further in subsequent sections. 

In our initial problem formulation, the general goal of any agent is to accumulate the most 
reward for servicing tasks.  There are numerous circumstances one could create under which 
complex strategies, such as short-term sacrifices for long-term benefit or sacrifices for the benefit 
of others, could be motivated.  This is not the focus of our initial work.  At the heart of our 
problem is the notion of the uncertainty of information obtained through communication with 

peer agents or from the age of globally broadcasted knowledge.  Risk is associated with the age 
of information in the form of the cost of servicing a task.  Cost may simply be a function of time, 
in that there is a fixed penalty associated with each time step that can only be offset by 
accumulating reward from servicing tasks.  Time misspent pursuing tasks that no longer need 
servicing is an example of the cost associated with the risk of uncertain information.  Assuming 
the agents travel at a finite speed and all task values and information ages being equal, closer 
tasks are more desirable.  Since all task values and information ages are not equal, the agent then 
must estimate the utility of attempting to service a task, based on a belief that the task remains 
unserviced and the anticipated value of servicing the task.  Alternate actions, such as searching 
or communicating, may be more beneficial, depending on the circumstances. 

known
task

unknown
task

Figure 15. Agents navigating through a physical space with 
known and unknown tasks.  Agents have distinct task 
surveillance, task detection, agent communication, and agent 
detection ranges, respectively illustrated by the four rings 
surrounding the agent, starting from the innermost ring 
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Figure 15 illustrates the basic problem setup.  Agents are navigating through the environment, 
searching for tasks and attempting to survey them if found.  Searching for a task only identifies 
the existence of a generic task within a field of view (FOV).  The surveillance detector 
subsequently receives type, value, and location information.  Agents also encounter their peers, 
with whom they can then exchange collected observations.  The environment is comprised of a 
set of tasks that are known and unknown, of which the definitions are still somewhat flexible.  
For now, we assume that when the experiment starts, agents are provided with the locations, 
types, and values of all known tasks but only the types of all unknown tasks.  Tasks that are 
serviced are replaced at a constant rate and information about those tasks is centrally broadcast to 
all agents, either the full location, type, and value for known tasks or just the type for unknown 
tasks.  Serviced tasks remain detectable until they are replaced.  The agent receives no value for 
surveying a task that has already been serviced.  

Despite the global broadcast of data, this information is still uncertain due to the limited 
observational perspective of the agent, combined with the presence of other agents in the 
environment.  Once the task has appeared in the environment, regardless of a known or unknown 
location, the agent does not know the task’s fate until it either confirms for itself or is told by 
another agent that it has been serviced.  In other words, pursuing a known task is not a sure thing. 

5.4.3 PO-MDP Controller Formulation 
State Transition Model – Using control theory terminology, the state of the system at time k+1, 
xk+1, is determined by the function fk(xk,uk,wk), where uk is the control executed by the agent in 
the previous time period and wk represents a random system disturbance with a known 
probability distribution.  One might assume that in the TASK setting, the random disturbance 
would be characterized by the randomness attributed to the actions of other agents and the 
addition of tasks to the environment by the central supervisor.  We will need to empirically 
determine the state transition model, P(xk+1 | xk,uk,wk), which will provide the agent with the 
distribution over the outcomes of the function fk. 

Estimation Function – Again, in control theory terminology, the evidence observations are 
denoted at time k by zk, determined by the function hk(xk,uk-1,vk), where xk is the current state, uk-

1 is the previous control, and vk a random observation disturbance.  We will need to empirically 
determine the probability distribution for the set of possible observations, given by P(zk | xk,uk-

1,vk), which will provide an essential component necessary for the agent to compute the 
probability distribution over states.  Note, this does not take into account other mechanisms, like 
recursive estimation.  Many different possibilities abound. 



 

Cost Function – Lastly, a cost function uses the computed distribution over states, with known 
costs of state transitions, to compute expected costs for each possible control. 
 Henceforth the probability distribution over true states will be referred to as the belief state.  We 
are not currently addressing online adaptation of model or policy parameters and we will assume 
for now that our policy function is a relatively simple function of cost.   

Figure 16 illustrates a basic formulation for the TASK agent as a PO-MDP controller.  The 
subscript k represents the current time step.  The following is a set of term definitions: 

xk – the true state of the system at the current time step,  
uk – control executed by agent,  
 

 
 

zk - set of current observations available to the agent,  
Ik - the total set of information used for computing belief state, including current and 
historical observations and previous actions, 
S(Ik) – a sufficient statistic representing the minimum information from Ik needed to compute 
the belief state, 
Bk - the agent’s estimated probability distribution over the set of true states (belief state),  
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g – a cost function yielding the cost of each action in each state, 
µ - a policy function that selects the next action based on the belief state and the cost function 

System States 

As part of our PO-MDP formulation, we must define the set of states that the system can assume 
and the possible transitions between those states.  Figure 17 illustrates our initial approach to the 

system states.  This delineation is based on the notion that an agent is only interested in things 
that are happening within a finite Area of Interest (AOI), which is much smaller than the entirety 
of the physical space within which the experiment takes place.  So, the states denoted in Figure 
17 indicate the true density of tasks within the area of interest.  The system can clearly transition 
between any two states, based on the influence of other agents in the environment or the addition 
of tasks by the simulator.   

The agent will use its sensors and interaction with peer agents to collect observations, with which 
it can probabilistically compute the likelihood that the system is in any particular state, and then 
select an appropriate action. 

5.4.4 Observations 
First, it is important to note that in our problem formulation there is a difference between the 
large set of information that the agent acquires and stores and the smaller set of information the 
agent considers as observations in the control theory sense of the word.  The agent maintains 
information about every cell in the environment, illustrated in Figure 18.  This is the information 
as it was collected by or reported to the agent, but may not be accurate due to the passage of 
time.  The agent uses the information from the area of interest for its own decision-making, but 
shares all information with peers.  A set of information is then filtered from the total map into a 
set of observables relevant to the agent’s area of interest, with which the agent then computes its 
belief state. 

No Tasks

1
Few

Unserviced
Tasks

2 3 4

5
Many

Unserviced
Tasks

0

Figure 17. State transitions reflecting discrimination on the task density within the 
agent’s area of interest 
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Table 3 lists the source and format of the information the agent may receive over its lifetime.  
From this a set of observables will be distilled for the computation at each agent decision point. 

 

 

Source Description Representation Notes 

Known Tasks 
 

Simulator 

Unknown Tasks 
Maybe just the number of unknown tasks at system start 
and incremental updates to indicate the addition of a new 
unknown task 

Where pi is the task’s location 
coordinate in Cartesian space, vi is 
the value of the task, ti is the type 
of the task drawn from the set of 
types ti ∈ {0,1}, and si is the time 
step at which the information was 
originally acquired from central 
broadcast. 

Search 
Detector Unknown Tasks 

 Where pi is the location coordinate 
in Cartesian space representing the 
center of the circle within which 
the task resides and si is the time 

Task ID
Type: 0
Value: 10
location: (x,y)
timestamp: t

Type: 1
location: (x,y)
timestamp: t

Figure 18. Agents maintain information about the entire environment, but limit 
decision making to include information about a limited area of interest

Table 3.  Source and content of all raw information, from which the agent constructs a set of observations. 
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step at which the task was detected. 

Surveillance 
Detector 

Known/unknown 
Tasks 

 Where pi is the task’s location 
coordinate in Cartesian space, vi is 
the value of the task, ti is the type 
of the task drawn from the set of 
types ti ∈ {0,1}, and si is the time 
step at which the task was detected. 

Peer Agents Known/unknown 
Tasks 

 Where pi is the task’s location 
coordinate in Cartesian space, vi is 
the value21 of the task, ti is the type 
of the task drawn from the set of 
types ti ∈ {0,1}, and si is the time 
step at which the information was 
originally acquired by the first 
agent. 

Agent 
Detector Peer Agents 

 

Where pi is the agent’s location 
coordinate in Cartesian space and ti 
is the type of the agent drawn from 
the set of types ti ∈ {0,1}. 

 

Computing the Belief State: 

Part of our research work is to devise a method by which the agent can use observed information 
to compute a belief state (Bk), which is a probability distribution over the set of possible states.  
The following is a discussion of our initial approach to computing the belief state.  We introduce 
the parameters of the function, but the actual function will be determined through empirical 
analysis. 

Assumptions:   

1) All tasks are the same value 

2) The total number of tasks is known 

3) The distribution of task types is known (e.g. 20% type A, 30% type B, etc) 

4) The total number of agents is known 

5) The distribution of agent types is known  

The agent should use its observations to compute its belief about the density of tasks within the 
area of interest.  The function, h, which the agent uses to compute the probability over states, 
should include the following as parameters: 

Bk = h({(t1,s1),(t2,s2),…,(tn,sn)}, k(x), u(y), a(z)) –  

                                                 
21 Receiving a task value of zero from a peer agent indicates the task has already been serviced 
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− The set of known (from simulator and peers) tasks in the AOI, represented as pairs of 
task IDs (ti) and time stamps (si) 

− a(z), the number of agents in the area of interest, with the parameter z being the total 
number of agents in the environment.  Initially, we might be able to achieve this by 
assuming a uniform distribution of agents (pursuing uniformly distributed tasks) and 
then just calculating the number of agents expected to be in the physical space of the 
AOI.  More advanced methods might include using observed or reported information 
about agents and trajectories. 

− u(y), the number of unknown tasks expected to be in the AOI.  Again, we can 
probably use the expected value, given the uniform distribution and number of 
unknown tasks believed to be remaining.   

− k(x), the number of known tasks expected to be in the AOI.  Again, we can probably 
use the expected value, given the uniform distribution and number of known tasks 
believed to be remaining.   

Example: 

1) The decision-making agent is of type A 

2) Total type A tasks: 50; 45 known, 5 unknown;  

3) Number of other type A agents: 10 

4) Proportionate size of AOI: 20% 

5) 9 type A known tasks were originally reported in the AOI (following the uniform 
distribution), 2 have since been reported as serviced, leaving 7 for which no new 
information has been received:  

6) Since we have a total of 5 unknown tasks and our AOI is 20% of the total physical space, 
we expect to find 1 unknown task within the AOI. 

7) So we start the calculation with the notion of 8 potential tasks in the AOI.  We’re then 
left to determine the impact of the age of the information about each task and the density 
of type A agents.   

With this information we compute a distribution over the states listed above. 

5.4.5 Actions 
The following actions are available to the agent at each decision step: 

Wide Area Search (WAS) –WAS causes the agent to execute a search pattern over a large area of 
the physical space while applying the Search Detector.   
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Fine-Grained Search (FGS) –FGS causes the agent to execute a search pattern over a smaller 
area of the physical space while applying the Search Detector.  This small area may be centered 
around the known location of a task or the center of the area in which a task has been detected. 

Service (SVC) – SVC causes the agent to apply the Surveillance Detector over a small area of the 
physical space in which a task has been detected. 

Communicate(ai) –Communication is reciprocal, so an agent both sends and receives 
information.  All information is exchanged, more than just the set of observables for the AOI.   

Move(p) – Moves the agent to point p in the physical space.  The point is 2D (Cartesian) in our 
current configuration. 

5.4.6 Policy 
Typically, the policy is just a mathematical function of utility of a state and the probability that 
an action will transition the agent to that state, look-aheads, etc not withstanding.  We assume the 
probability distribution is handled by the estimator, so the explicit difficulty here is the utility 
function, otherwise known as the cost function.  The nature and effect of agent interaction may 
make the cost function difficult to capture empirically. 

Interaction between agents in a Multi-Agent System typically has an explicit connotation, such 
as negotiating joint actions or directly observing and reasoning about another agent in order to 
select complimentary actions.  Our initial problem formulation is scoped to include only 
exchange of observation information (e.g. task locations/values/types), with the possible 
exception of explicitly considering histories of other agents to appropriately weigh search 
strategies or to weigh the value of communication with a particular agent. 

A significant question is then how to represent the expected value/cost of exchanging 
information and how to represent the resultant state transition.  Communicating information does 
not change the external state of the environment, but rather changes the agent’s state of 
knowledge.  Aside from the question of how this is modeled, how is this transition valued?  Is 
the measure quantitative, in terms of the amount of information received or is it qualitative, in 
terms of the impact on the agent’s ability to make good decisions and reap the subsequent 
reward?  Are there implicit costs associated with communicating, such as the delay in direct 
action?  E.g. time spent communicating is time not spent searching or servicing.  Is there a way 
of measuring the cost associated with poor action choices based on bad (old) information, 
received from another agent?  Or, can all of this be avoided by simply making search and 
communication default actions, chosen uniformly when no task is available to attempt to service?  
These are questions we will endeavor to answer as our research progresses. 

5.5 Conclusions and Continuing Research 
We have successfully conducted research to develop statistical methods by which agents 
operating in a Multi-Agent System can efficiently share knowledge.  Our current work is 
designed to provide control logic and supporting knowledge structures for single agents 
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operating in cooperative Multi-Agent Systems, within which we can further explore the value of 
cooperative learning and knowledge sharing.   

To facilitate this formulation of a PO-MDP controller, we will conduct experiments to develop 
the correct level of granularity for representations of system state and agent observations, which 
will allow agents to tractably compute probabilistic beliefs about the conditions of the dynamic 
environment.  Once we have developed an appropriate agent mechanism for assessing the state 
of the environment, we will turn our attention to the design of policy functions, which include 
methods for determining the cost and efficacy of agent actions.  Combining the state models with 
the policy functions will provide the agent with a mathematical mechanism for decision-making 
in the uncertain Multi-Agent System environment.   

Our near-term work will be focused on completing these objectives and conducting initial 
experiments to determine the applicability of a PO-MDP agent controller within a Multi-Agent 
System environment.  We expect our initial design to undergo iterative refinement during this 
process.  Once we have arrived at a stable design for the agent controller we can then design and 
evaluate our formal methods for cooperative learning and knowledge sharing. 

6 Project Conclusions and Continuing Work 

6.1 Open Experimentation Framework 
ALPHATECH has accomplished the following major OEF milestones: 

• Successfully defined a MAS UAV problem, administered the CAHDE REF, and 
coordinated the participation and research of multiple TASK project PIs. 

• Identified and refined seven major critical elements for MAS research and evaluation and 
defined their dimensions 

• Developed detailed OEF problem specifications and metrics for Adaptation and 
Coordination critical elements, which will provide PI researchers with a common 
framework for evaluating their solutions 

• Defined and specified baseline parameters for the UAV-S(1) surveillance problem, which 
includes the configurable dimensions of the UAV problem and measurement criteria.  
This provides a common environment for PI research and evaluation. 

• Engaged all project PIs on OEF definition, problem specification, and integration of their 
research 

ALPHATECH’s future OEF work will entail the following: 
• Continue specifying the OEF in terms of the major MAS design critical elements so that 

MAS design dimensions are well understood and measurement criteria can be developed 
• Fully define the UAV-S(2)-(5) problems to facilitate research along new dimensions and 

additional levels of problem complexity 
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• Supporting the PIs to integrate their research into the OEF so that a common evaluation 
framework can be developed 

• Supporting the DARPA Program Manager with reports and status 
• Continue to develop and maintain the problem generator to support the UAV problem 

specifications 

6.2 Testbed for Taskable Agent Systems 
ALPHATECH has accomplished the following major testbed milestones.: 

• Developed a multi-threaded software system capable of supporting: 
− Well defined APIs supporting multiple interactive agents with different underlying 

implementations so that disparate agent technologies can be evaluated within the 
same framework 

− Fully 3-dimensional environment to support realistic problem formulations 
− Six degrees of freedom for UAV motion to support more complex and realistic agent 

decisions 
− Relational database for extensive experiment data logging to support experiment 

analysis 
− XML configuration file to adjust the many system parameters and to support 

repeatable experiments 
ALPHATECH’s future testbed work will be focused on adding the following features: 

• Support for moving targets  
• Providing facilities for unreliable information to support research addressing uncertainty 

and trust 
• Supporting cross mission tasking scenarios to support research requiring agents to 

negotiate joint actions 
• Adding time critical targeting to support research approaches that can deal with 

computational bounds on decision algorithms 
• Including terrain and geographic features and the effects of terrain on line-of-sight 

sensing and communication 

6.3 Multi-Agent System Research 
ALPHATECH has accomplished the following major research milestones. 

• Conducted extensive research efforts focused on the development of new mechanisms for 
coordination and interaction of agents operating in a Multi-Agent System. 

• Developed a mechanism for measuring quality of knowledge learned through 
Reinforcement Learning so that agents can decide what warrants knowledge exchange 

• Conducted experiments to evaluate quality measurement methodology 
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• Began development of a Partially Observable Markov Decision Process framework for an 
agent controller capable of operating within a multi-agent system environment.  Will 
support agent decision-making and actions and provide a foundation for cooperative 
learning research 

ALPHATECH’s future research work will be focused on: 

• Completing the design of the PO-MDP agent controller so that the environment states 
and agent observations are fully specified and mathematically consistent.  This provides 
the foundation for reasoning and action. 

• Implementing the agent controller within the TTAS to conduct robust UAV experiments 
with baseline UAV-S(1) problem 

• Conducting further experimentation and research with our cooperative learning 
algorithms to allow agents to exchange and benefit from the learned knowledge of other 
peer agents, dramatically reducing the computational complexity of the online learning 
problem and increasing the efficacy of the agents 
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